Project description:Mosquitoes are the most notorious hematophagous insects and due to their blood feeding behavior and genetic compatibility, numerous mosquito species are highly efficient vectors for certain human pathogenic parasites and viruses. The mosquito midgut is the principal organ of blood meal digestion and nutrient absorption. It is also the initial site of infection with blood meal acquired parasites and viruses. We conducted an analysis based on single-nucleus RNA sequencing(snRNA-Seq) to assess the cellular diversity of the midgut and how individual cells respond to blood meal ingestion to facilitate its digestion.
Project description:Fat body is an important tissue in the context of vitellogenesis, vector immunity, vector physiology and vector-parasite interaction. However, the proteome of fatbody and impact of blood meal on the gene expression of this vital organ has not been investigated so far. Therefore, in this study, we made an attempt to identify proteins expressed in fatbody of An. stephensi and their altered expression in response to blood meal. In all, we identified 4,504 proteins in the fatbody using multiple fractionation strategies, which is by far the largest resource of fatbody proteome in any mosquito species. Further, comparative proteomic analysis of fatbody 24 and 48 hours post blood meal led to identification of over 300 differentially expressed proteins. Bioinformatics analysis of these proteins suggested their role in vitellogenesis, lipid transport, mosquito immunity and oxidation-reduction processes. Interestingly, we identified four novel genes,which were found to be differentially expressed upon blood meal. These proteins are potential target for vector control strategies and development of transmission blocking vaccines.
Project description:The Southern house mosquito, Culex quinquefasciatus, is an anautogenous mosquito species that requires a blood meal in order to provision the eggs. Following the eclosion of the adults from the pupal stage, adult female mosquitoes require a period of time for mating and development before they are competent to take a blood meal. In order to better understand the genes involved in preparing the females to take a blood meal, populations of non-blooded adult female Cx. quinquefasciatus were collected from even-aged populations and used for RNA Seq analysis. A total of seven post-eclosion time points were selected (2, 12, 24, 36, 48, 60, and 72 hours), which spanned the pre-blood feeding time period and the time period during which the females were competent for the acquisition of the blood meal. Overall, the majority of differentially-expressed genes were identified between the 2 and 12h time points with most genes reaching stable expression after 36h. This study identified the global changes in gene expression profiles over time as the females become competent to acquire the blood meal.
Project description:Anopheles gambiae mosquitoes transmit the human malaria parasite Plasmodium falciparum, which causes the majority of fatal malaria cases worldwide. The hematophagous life style defines the mosquito reproductive biology and is exploited by P. falciparum for its own sexual reproduction and transmission. The two main phases of the mosquito reproductive cycle, pre-vitellogenic (PV) and post-blood meal (PBM) shape its capacity to transmit malaria. Transition between these phases is tightly coordinated to ensure homeostasis between mosquito tissues and successful reproduction. One layer of control is provided by microRNAs, well-known regulators of blood meal digestion and egg development in mosquitoes. Here, we report a global overview of tissue-specific miRNA expression during the PV and PBM phases and identify miRNAs regulated during PV to PBM transition. The observed coordinated changes in the expression levels of a set of miRNAs in the energy-storing tissues suggest a role in the regulation of blood meal-induced metabolic changes.
Project description:Background: The mosquito Anopheles gambiae is a major vector of human malaria. Increasing evidence indicates that blood cells (hemocytes) comprise an essential arm of the mosquito innate immune response against both bacteria and malaria parasites. To further characterize the role of hemocytes in mosquito immunity, we undertook the first genome-wide transcriptomic analyses of adult female An. gambiae hemocytes following infection by two species of bacteria and a malaria parasite. Results: We identified 4047 genes expressed in hemocytes, using An. gambiae genome-wide microarrays. While 279 transcripts were significantly enriched in hemocytes relative to whole adult female mosquitoes, 959 transcripts exhibited immune challenge-related regulation. The global transcriptomic responses of hemocytes to challenge with different species of bacteria and/or different stages of malaria parasite infection revealed discrete, minimally overlapping, pathogen-specific signatures of infection-responsive gene expression; 105 of these represented putative immunity-related genes including anti-Plasmodium factors. Of particular interest was the specific co-regulation of various members of the Imd and JNK immune signaling pathways during malaria parasite invasion of the mosquito midgut epithelium. Conclusion: Our genome-wide transcriptomic analysis of adult mosquito hemocytes reveals pathogen-specific signatures of gene regulation and identifies several novel candidate genes for future functional studies. In order to identify hemocyte-specific and immune-responsive transcripts, we first compared transcripts expressed in hemocytes from one day old sugar-fed mosquitoes to transcripts detected in whole mosquitoes of the same age and feeding status. This resulted in identification of the hemocyte-enriched transcriptome. We then compared hemocytes from 1 day old mosquitoes, 1 hour after immune challenge with heat-killed Escherichia coli or Micrococcus luteus, to control female mosquitoes injected with sterile PBS to determine the bacteria challenge responsive transcriptomes. We used heat-killed bacteria in these assays, because our primary interest was in identifying the bacterial responsive transcriptome and to avoid the potentially confounding effects of altered gene expression due to the lethal effects of a systemic infection associated with injection of living bacteria. Lastly, we compared hemocytes from mosquitoes at 24 hours and 19 days after ingestion of a blood meal infected with Plasmodium berghei to mosquitoes of the same age fed a non-infected blood meal to determine the ookinete and sporozoite infection responsive transcriptomes, respectively. This design resulted in a total of five experimental treatments. The following samples are not included in this submission: Hemo E coli vs. hemo unchallenged A Hemo E coli vs. hemo unchallenged B Hemo m luteus vs. hemo unchallenged A Hemo m luteus vs. hemo unchallenged B
Project description:Small-scale microarray profiling of all the genes encoding P450 enzymes of the malaria mosquito Anopheles gambiae in active steroidogenic organs of adults. Ovaries from non blood-fed females were compared to ovaries of blood-fed females at different times after the blood meal: 16 and 22h post-blood-meal, and to male reproductive tracts from males.
Project description:Wolbachia pipientis is an obligate intracellular bacterium capable of spreading itself through populations by manipulating the reproduction of its hosts. The Wolbachia strain wMelPop, which reduces longevity in Drosophila melanogaster, has been introduced into the Dengue virus mosquito vector, Aedes aegypti, as a strategy to reduce disease transmission. The infecting Wolbachia halve the lifespan of the mosquito and induce numerous behavioral and physiological abnormalities that reduce the ability of the mosquito to successfully obtain a blood meal. We aim to understand the mechanism underpinning these changes and hence have chosen to explore how Wolbachia may be interacting with the insects nervous and muscle tissue. We carried out a series whole genome profiling experiments based on head and muscle tissues to identify mosquito pathways affected by the microbe.
Project description:A deeper understanding of malaria parasite development inside the Anopheles mosquito may lead to the identification of processes that can be targeted by transmission-blocking interventions. Paraquat (1,1'-dimethyl-4,4'-bipyridylium dichloride) is a potent superoxide-inducing agent that impacts Plasmodium ookinete development, especially at higher concentrations. Compounds like Paraquat can potentially induce an oxidative imbalance in the mosquito midgut during ookinete maturation, essentially super-stressing the parasite leading to the arrested development of ookinetes, the only stage that can invade through a mosquito midgut cell to establish an oocyst infection in the mosquito. The mosquito midgut has evolved to handle the natural production of reactive oxygen and nitrogen species (ROS and RNS, respectively) as a result of feeding on blood. The addition of Paraquat to a bloodmeal is expected to induce a cognate response in the midgut to handle the excess ROS/RNS, and high concentrations of this compound can potentially overwhelm the midgut response leading to mosquito death. While several studies have explored the effect of Paraquat on malaria parasites, a fundamental understanding of the mosquito response to this compound remains unknown. Here, we quantified the mosquito midgut proteomic response to a Paraquat-laced sugar meal to understand the intrinsic midgut response (in the absence of a bloodmeal). We then carried out transcriptomic analysis of the mosquito midgut for several antioxidants of the Trx and GSH pathways to compare concordance or discordance between protein and its transcripts during different oxidative stress conditions. Finally, we determined whether the same Trx and GSH pathways are upregulated following infection with either P. falciparum or P. berghei at 24 hrs post-blood feeding, coinciding with the time point for maximal ookinete traversal of the midgut. We discuss the potential selective action of Paraquat on the parasite and the intrinsic tolerance of the mosquito midgut to Paraquat-mediated oxidative stress.