Project description:Microbial communities that degrade lignocellulosic biomass are typified by high levels of species- and strain-level complexity, as well as synergistic interactions between both cellulolytic and non-cellulolytic microorganisms. Here we deconvoluted a highly efficient cellulose-degrading and methanogenic consortium (SEM1b) that is co-dominated by Clostridium (Ruminiclostridium) thermocellum and multiple heterogenic strains affiliated to C. proteolyticus. A time-series analysis was performed over the entire lifetime span of the microbial community and comprised of metagenomic, metatranscriptomic, metabolomics, metaproteomic and 16S rRNA gene analysis for 8 time points, in triplicate. Metagenomic analysis of SEM1b recovered metagenome-assembled genomes (MAGs) for each constituent population, whereas in parallel two novel strains of C. proteolyticus were isolated and sequenced. Both the recovered MAGs and the isolated strains were used as a database for further functional meta-omics. Absolute quantitative metatranscriptomics was performed thanks the spike-in of an in vitro transcribed RNA as an internal standard and label-free quantification was used for the metaproteomic analysis. The present dataset has been used for several publications. The first aim of the project was to characterize the interactions between uncultured populations in a lignocellulose-degrading community. Furthermore, because of the in-depth multi-omics characterization of the community, the dataset was used to develop new approaches for meta-omics integration as well as to assess the protein-to-RNA ratio of multiple microbial populations simultaneously. Modifications of multi-omics toolkits allowed us to assess the linearity between transcriptome and proteome for each population over time and reveal deeper functional-related trends and integrative co-dependent metabolisms that drive the overall phenotype of microbial communities.
Project description:Purpose: Identification of transcriptionally active genes in the unculturable community constituent, Smithella, during hexadecane degradation; Differential gene expression analysis of hexadecane-relevant genes acoss three different conditions; Extension of metatranscriptomic datasets to other community constituents to identify interspecies relationships. mRNA profiles were generated for this community across three different conditions (hexadecane-, butyric acid-, caprylic acid-degrading conditions) using a modified version of Nextera and sequenced using Illumina's Miseq platform.
Project description:To understand microbial community functional structures of activated sludge in wastewater treatment plants (WWTPs) and the effects of environmental factors on their structure, 12 activated sludge samples were collected from four WWTPs in Beijing. GeoChip 4.2 was used to determine the microbial functional genes involved in a variety of biogeochemical processes. The results showed that, for each gene category, such as egl, amyA, nir, ppx, dsrA sox and benAB, there were a number of microorganisms shared by all 12 samples, suggestive of the presence of a core microbial community in the activated sludge of four WWTPs. Variance partitioning analyses (VPA) showed that a total of 53% of microbial community variation can be explained by wastewater characteristics (25%) and operational parameters (23%), respectively. This study provided an overall picture of microbial community functional structures of activated sludge in WWTPs and discerned the linkages between microbial communities and environmental variables in WWTPs.
Project description:To understand microbial community functional structures of activated sludge in wastewater treatment plants (WWTPs) and the effects of environmental factors on their structure, 12 activated sludge samples were collected from four WWTPs in Beijing. GeoChip 4.2 was used to determine the microbial functional genes involved in a variety of biogeochemical processes. The results showed that, for each gene category, such as egl, amyA, nir, ppx, dsrA sox and benAB, there were a number of microorganisms shared by all 12 samples, suggestive of the presence of a core microbial community in the activated sludge of four WWTPs. Variance partitioning analyses (VPA) showed that a total of 53% of microbial community variation can be explained by wastewater characteristics (25%) and operational parameters (23%), respectively. This study provided an overall picture of microbial community functional structures of activated sludge in WWTPs and discerned the linkages between microbial communities and environmental variables in WWTPs. Four full-scale wastewater treatment systems located in Beijing were investigated. Triplicate samples were collected in each site.
Project description:We investigated a contaminant-degrading microbial community by sequencing total RNA (without rRNA depletion) from microcosms containing sediment from a hypoxic contaminated aquifer fed with isotopically labeled toluene.