Project description:This study was designed to identify the sRNAs in Aphis gossypii (cotton-melon aphid) during Vat-mediated resistance in teraction with melon
Project description:This study was designed to identify the sRNAs in Aphis gossypii (cotton-melon aphid) during Vat-mediated resistance in teraction with melon Methods: Whole insects were collected from susceptible (Vat-) and resistant (Vat+) plants after 48 hours of feeding. Total RNA was extracted from the aphids and enriched for LMW RNA and small RNA libraries were constructed using standard protocols and deep sequenced using Illumina GAII analyzer.
Project description:Gene expression profiles in resistant (cv. Dowling) and susceptible (Williams 82) soybean genotypes [Glycine max (L.) Merrill] were compared at 6 and 12 h with and without aphid (Aphis glycines Matsumura) infestation using cDNA microarrays consisting of approximately 18,000 soybean-expressed sequence tags. More genes were induced in Dowling than Williams 82 at 6 h after infestation. Genes that were differentially expressed between aphid and control treatments were selected as aphid-response genes. Eighty-four genes showed specific responses in Dowling and included genes related to defense and other processes. Expression of three defense-related genes was examined at 6, 12, 24, 48, and 72 h after infestation in both genotypes by quantitative real-time PCR. The increases in the transcripts of three defense-related genes were earlier and stronger at 6, 12 and 24 h after infestation in Dowling compared to Williams 82. The differential gene expression between the two genotypes without aphids was determined, and five genes with constitutively higher expression levels were found in Dowling. Keywords = genomic Keywords = Defense Responses Keywords = plant Keywords = DNA-binding protein Keywords = PR proteins Keywords = plant resistance Keywords = signal transduction keywords = insect Keywords: susceptible vs resistant
Project description:Through transcriptome, thirty-eight P450 genes were identified in Aphis craccivora, and most of the genes belonged to the CYP3 and CYP4 Clans. Ten GST genes were identified, including two Delta genes which play important roles in xenobiotic detoxification.
Project description:The cotton - melon aphid Aphis gossypii is an extremely polyphagous sap feeding insect which infests more than 900 crops worldwide and posing a severe threat to farmers. The salivary proteins acts as interface between aphid and their host plant.However, the cotton aphid salivary proteome was not studied yet. Identifying the salivary proteins helps in better understanding of aphid adaptation to their host plant which aids us to search for novel plant genetic source.
Project description:Soybean aphid is one of the major limiting factors for soybean production. However, the mechanism for aphid resistance in soybean is remain enigmatic, very little information is available about the different mechanisms between antibiosis and antixenosis genotypes. Here we dissected aphid infestation into three stages and used genome-wide gene expression profiling to investigate the underlying aphid-plant interaction mechanisms. Approximately 990 million raw reads in total were obtained, the high expression correlation in each genotype between infestation and non-infestation indicated that the response to aphid was controlled by a small subset of important genes. Moreover, plant response to aphid infestation was more rapid in resistant genotypes. Among the differentially expressed genes (DEGs), a total of 901 transcription factor (TF) genes categorized to 40 families were identified with distinct expression patterns, of which AP2/ERF, MYB and WRKY families were proposed to playing dominated roles. Gene expression profiling demonstrated that these genes had either similar or distinct expression patterns in genotypes. Besides, JA-responsive pathway was domination in aphid-soybean interaction compared to SA pathway, which was not involved plant response to aphid in susceptible and antixenotic genotypes but played an important role in antibiosis one. Throughout, callose were deposited in all genotypes but it was more rapidly and efficiently in antibiotic one. However, reactive oxygen species were not involved in response to aphid attack in resistant genotypes during aphid infestation. Our study helps uncover important genes associated with aphid-attack response in antibiosis and antixenotic genotypes of soybean.
Project description:The cowpea aphid, Aphis craccivora (Hemiptera: Aphididae), is one of the most destructive insect pests of cowpea, peanut, and other legumes in tropical and subtropical regions. However, there are little-known molecular mechanisms underlying the host plant specification and their interaction. Aphids secretes numerous proteins while feeding on plants to counteract plant defenses which became indispensable for its survival and growth. In this study we identified salivary proteins of cowpea aphid using LC-MS/MS.