Project description:Effects of biochar supported nano zero-valent iron with different carbon/iron ratios on two-phase anaerobic digestion of food waste
Project description:Anaerobic digestion is a popular and effective microbial process for waste treatment. The performance of anaerobic digestion processes is contingent on the balance of the microbial food web in utilizing various substrates. Recently, co-digestion, i.e., supplementing the primary substrate with an organic-rich co-substrate has been exploited to improve waste treatment efficiency. Yet the potential effects of elevated organic loading on microbial functional gene community remains elusive. In this study, functional gene array (GeoChip 5.0) was used to assess the response of microbial community to the addition of poultry waste in anaerobic digesters treating dairy manure. Consistent with 16S rRNA gene sequences data, GeoChip data showed that microbial community compositions were significantly shifted in favor of copiotrophic populations by co-digestion, as taxa with higher rRNA gene copy number such as Bacilli were enriched. The acetoclastic methanogen Methanosarcina was also enriched, while Methanosaeta was unaltered but more abundant than Methanosarcina throughout the study period. The microbial functional diversity involved in anaerobic digestion were also increased under co-digestion.
Project description:The taxonomic and functional informations of glutathione alleviating ammonia inhibition to anaerobic digestion of food waste with enhanced-bioconversions were acquired by the metaproteomic analysis. The informations were parsed to unravel the fundamental mechanisms via revealing the variation traits of the functional microbiomial community, elucidating the changes of microbial gene expression process, and digging out the core enzymes involved in the enhanced-bioconversions.