Project description:Herein we identified Niemann–Pick C1-like 1 (NPC1L1) as a downstream effector of PKM2. Knockout of PKM2 enhanced NPC1L1 expression in breast cancer cells, while reducing the peroxisome proliferator-activated receptor α (PPARα) signaling pathway. Fenofibrate, a PPARα agonist, promoted NPC1L1 expression. Combined administration of fenofibrate and ezetimibe, a NPC1L1 inhibitor, significantly induced cytoplasmic vacuolation and cell apoptosis. Mechanistically, combined administration activated the inositol required enzyme 1α(IRE1α)- x box binding protein spliced (XBP1s) and lysine demethylase 6B (KDM6B). XBP1s interacted with KDM6B to activate genes involved in unfold protein response through demethylating di- and tri-methylated lysine 27 of histone H3 (H3K27) and consequentially increasing the level of H3K27 acetylation in breast cancer cell lines. Fenofibrate and ezetimibe synergistically inhibited tumor growth and lung metastasis in vivo. Together, our findings reveal that dual targeting PPARα and NPC1L1 may be developed as a new regimen for breast cancer therapy.
Project description:Autophagy is an evolutionally conserved catabolic process that recycles nutrients upon starvation and maintains cellular energy homeostasis1-3. Its acute regulation by nutrient sensing signaling pathways is well described, but its longer-term transcriptional regulation is not. The nuclear receptors PPARα and FXR are activated in the fasted or fed liver, respectively4,5. Here we show that both regulate hepatic autophagy. Pharmacologic activation of PPARα reverses the normal suppression of autophagy in the fed state, inducing autophagic lipid degradation, or lipophagy. This response is lost in PPARα knockout (PPARα-/-) mice, which are partially defective in the induction of autophagy by fasting. Pharmacologic activation of the bile acid receptor FXR strongly suppresses the induction of autophagy in the fasting state, and this response is absent in FXR knockout (FXR-/-) mice, which show a partial defect in suppression of hepatic autophagy in the fed state. PPARα and FXR compete for binding to shared sites in autophagic gene promoters, with opposite transcriptional outputs. These results reveal complementary, interlocking mechanisms for regulation of autophagy by nutrient status. Mouse liver PPARα cistromes in fed 8-week-old male WT or PPARα KO mice treated with or without its synthetic agonist ligand GW7647twice a day were generated by deep sequencing in quadruplicate using illumina
Project description:Peroxisome Proliferator-Activated receptor α (PPARα) and cAMP-Responsive Element Binding Protein 3-Like 3 (CREB3L3) are transcription factors involved in the regulation of lipid metabolism in the liver. The aim of the present study was to characterize the interrelationship between PPARα and CREB3L3 in regulating hepatic gene expression. Male wildtype, PPARα-/-, CREB3L3-/- and combined PPARα/CREB3L3-/- mice were subjected to a 16-hour fast or 4 days of ketogenic diet. Whole genome expression analysis was performed on liver samples. Under conditions of overnight fasting, the effects of PPARα ablation and CREB3L3 ablation on plasma triglyceride, plasma β-hydroxybutyrate, and hepatic gene expression were largely disparate, and showed only limited interdependence. Gene and pathway analysis underscored the importance of CREB3L3 in regulating (apo)lipoprotein metabolism, and of PPARα as master regulator of intracellular lipid metabolism. A small number of genes, including Fgf21 and Mfsd2a, were under dual control of PPARα and CREB3L3. By contrast, a strong interaction between PPARα and CREB3L3 ablation was observed during ketogenic diet feeding. Specifically, the pronounced effects of CREB3L3 ablation on liver damage and hepatic gene expression during ketogenic diet were almost completely abolished by the simultaneous ablation of PPARα. Loss of CREB3L3 influenced PPARα signalling in two major ways. Firstly, it reduced expression of PPARα and its target genes involved in fatty acid oxidation and ketogenesis. In stark contrast, the hepatoproliferative function of PPARα was markedly activated by loss of CREB3L3. These data indicate that CREB3L3 ablation uncouples the hepatoproliferative and lipid metabolic effects of PPARα. Overall, except for the shared regulation of a very limited number of genes, the roles of PPARα and CREB3L3 in hepatic lipid metabolism are clearly distinct and are highly dependent on dietary status.
Project description:Peroxisome-proliferator activated receptor α (PPARα) activation reprograms liver gene expression to support fatty acid oxidation during fasting. How PPARα engages in transcriptional programs coping with catabolic fasting responses is insufficiently understood. By applying a protein-protein interaction methodology that also captures transient interactions, we revealed the orphan nuclear receptor estrogen-related receptor α (ERRα) as a novel interaction partner of liganded PPARα and found that this interaction is enhanced following cellular nutrient starvation. Among target genes affected by PPARα-ERRα transcriptional crosstalk in fasted murine livers, multiple components of the electron transport chain were identified. Using pharmacological tools to study hepatic gene subsets under dual PPARα and ERRα control and moving from short-term to prolonged nutrient deprivation, we found that ERRα can switch from being a PPARα target gene suppressor to a marked PPARα target gene activator. Mechanistically, ERRα may control PPARα transcriptional activity via binding onto PPARα’s coactivator interaction site and via facilitating cofactor relays. In sum, a variety of crosstalk mechanisms between PPARα and ERRα seems to co-ordinately drive essential gene regulatory changes in the starving hepatocyte.
Project description:Macrophages (MQs) are key immune infiltrates in solid tumors and serve as major drivers behind tumor growth, immune suppression, and inhibition of adaptive immune responses in the tumor microenvironment (TME). Bromodomain and extraterminal (BET) protein, BRD4, which binds to acetylated lysine on histone tails has recently been reported to promote gene transcription of pro-inflammatory cytokines, but has rarely been explored for its role in IL4-driven macrophage transcriptional programming and macrophage-mediated immunosuppression in the TME. Herein, we report that BET bromodomain inhibitor JQ1, blocks association of BRD4 with promoters of arginase and other IL4-driven macrophage genes, which promote immunosuppression in TME. Pharmacological inhibition of BRD4 using JQ1 and/or PI3K using dual PI3K/BRD4 inhibitor SF2523 (previously reported by our group as a potent inhibitor to block tumor growth and metastasis in various cancer models) suppresses tumor growth in syngeneic and spontaneous mice models; reduces infiltration of MDSCs; blocks polarization of immunosuppressive MQs; restores CD8+ T-cell activity and stimulates anti-tumor immune responses. Finally, our results suggest that BRD4 controls the immunosuppressive myeloid tumor microenvironment and provide opportunity to test BET inhibitors and dual PI3K/BRD4 inhibitors to treat cancers driven by the MQ-dependent immunosuppressive TME.
Project description:Nuclear receptor activation in liver leads to coordinated alteration of the expression of multiple gene products with attendant phenotypic changes of hepatocytes. Peroxisome proliferators including endogenous fatty acids, environmental chemicals, and drugs induce a multi-enzyme metabolic response that affects lipid and fatty acid processing. We studied the signaling network for the peroxisome proliferator-associated receptor alpha (PPARα) in primary human hepatocytes using the selective PPARα ligand, GW7647. We measured gene expression over multiple concentrations and times and conducted ChIP-seq studies at 2 and 24 hours to assess genomic binding of PPARα. Over all treatments there were 192 genes differentially expressed. Of these only 51% showed evidence of PPARα binding – either directly at PPARα response elements or via alternative mechanisms. Almost half of regulated genes had no PPARα binding. We then developed two novel bioinformatics methods to visualize the dose-dependent activation of both the transcription factor circuitry for PPARα and the downstream metabolic network in relation to functional annotation categories. Available databases identified several key transcription factors involved with the non-genomic targets after GW7647 treatment, including SP1, STAT1, ETS1, ERα, and HNF4α. The linkage from PPARα binding through gene expression likely requires intermediate protein kinases to activate these transcription factors. We found enrichment of functional annotation categories for organic acid metabolism and cell lipid metabolism among the differentially expressed genes. Lipid transport processes showed enrichment at the highest concentration of GW7647 (10μM). While our strategy for mapping transcriptional networks is evolving, these approaches are necessary in moving from toxicogenomic methods that derive signatures of activity to methods that establish pathway structure, showing the coordination of the activated nuclear receptor with other signaling pathways. Primary hepatocytes from four donors were exposed to 0, 0.001, 0.01, 0.1, 1.0, or 10.0μM GW7647 for 2, 6, 12, 24, or 72 hours.
Project description:Mesothelioma is a cancer that typically originates in the pleura of the lungs. It rapidly invades the surrounding tissues, resulting in pain and shortness of breath. We compared mesothelioma cell lines that were injected either subcutaneously or intrapleurally and found that only the latter resulted in invasive and rapid growth. Pleural tumours displayed a transcriptional signature consistent with increased activity of nuclear receptorsPPARα and PPARγ and with an increased abundance of endogenous PPAR-activating ligands. We found that chemical probe GW6471 is a potent dual PPARα/γ antagonist with anti-invasive and anti-proliferative activity in vitro. However, administration of GW6471 at doses that provided sustained plasma exposure levels sufficient for inhibition of PPARα/γ transcriptional activity did not result in significant anti-mesothelioma activity in mice. Lastly, we demonstrate that the in vitro antitumour effect of GW6471 is off-target. We conclude that dual PPARα/γ antagonism alone is not a viable treatment modality for mesothelioma.
Project description:Autophagy is an evolutionally conserved catabolic process that recycles nutrients upon starvation and maintains cellular energy homeostasis1-3. Its acute regulation by nutrient sensing signaling pathways is well described, but its longer-term transcriptional regulation is not. The nuclear receptors PPARα and FXR are activated in the fasted or fed liver, respectively4,5. Here we show that both regulate hepatic autophagy. Pharmacologic activation of PPARα reverses the normal suppression of autophagy in the fed state, inducing autophagic lipid degradation, or lipophagy. This response is lost in PPARα knockout (PPARα-/-) mice, which are partially defective in the induction of autophagy by fasting. Pharmacologic activation of the bile acid receptor FXR strongly suppresses the induction of autophagy in the fasting state, and this response is absent in FXR knockout (FXR-/-) mice, which show a partial defect in suppression of hepatic autophagy in the fed state. PPARα and FXR compete for binding to shared sites in autophagic gene promoters, with opposite transcriptional outputs. These results reveal complementary, interlocking mechanisms for regulation of autophagy by nutrient status.