Project description:We generated the complete chloroplast genome sequence of Sinomenium acutum, a species of the Menispermaceae family, and characterized from the de novo assembly of Illumina HiSeq paired-end sequencing data. The total length of the chloroplast genome of S. acutum was 162,787 bp with a large single-copy (LSC) region of 91,430 bp, a small single-copy (SSC) region of 21,245 bp, and a pair of identical inverted repeat regions (IRs) of 25,056 bp. The total of 131 genes were annotated in the chloroplast genome of Sinomenium acutum, including 85 protein-coding genes, 38 transfer RNA (tRNA) genes, and 8 ribosomal RNA (rRNA) genes. The phylogenetic analysis of S. acutum with 18 related species revealed the closest taxonomical relationship with Menispermum dauricum in the Menispermaceae family.
| S-EPMC7783043 | biostudies-literature
Project description:Transcriptome analysis of Sinomenium acutum
Project description:Sinomenium acutum (SA) has long been used as a traditional medicine in China, Japan, and Korea to treat a wide range of diseases. It has been traditionally used to ameliorate inflammation and improve blood circulation. However, its role in platelet activation has not been thoroughly investigated. Hence, we conducted this study to assess the potential inhibitory effect of SA on platelet aggregation and thrombus formation. The antiplatelet activities of SA were evaluated by assessing platelet aggregation, granular secretion, intracellular Ca2+ mobilization, and the Glycoprotein (GP) VI-mediated signalosome. The thrombosis and bleeding time assays were used to investigate the effect of SA (orally administered at 50 and 100 mg/kg for seven days) in mice. SA treatment at concentrations of 50, 100, and 200 μg/mL significantly reduced GPVI-mediated platelet aggregation, granular secretion, and intracellular Ca2+ mobilization. Further biochemical studies revealed that SA inhibited spleen tyrosine kinase, phospholipase Cγ2, phosphatidylinositol 3-kinase, and AKT phosphorylation. Interestingly, oral administration of SA efficiently ameliorated FeCl3-induced arterial thrombus formation without prolonging the tail bleeding time. These findings suggest that SA has beneficial effects in thrombosis and hemostasis. Therefore, SA holds promise as an effective therapeutic agent for the treatment of thrombotic diseases.
Project description:Sinomenium acutum stem is a popular traditional Chinese medicine used to treat bone and joint diseases. Sinomenine is considered the only chemical marker for the quality control of S. acutum stem in mainstream pharmacopeias. However, higenamine in S. acutum stem is a novel stimulant that was banned by the World Anti-Doping Agency in 2017. Therefore, enhancing the quality and safety control of S. acutum stem to avoid potential safety risks is of utmost importance. In this study, a fast, sensitive, precise, and accurate method for the simultaneous determination of 11 alkaloids in S. acutum stem by ultrahigh-performance liquid chromatography coupled with triple quadrupole tandem mass spectrometry (UHPLC-QQQ-MS/MS) was established. This method successfully analyzed thirty-five batches of S. acutum stem samples. The average contents of sinomenine, magnoflorine, coclaurine, acutumine, higenamine, sinoacutine, palmatine, magnocurarine, columbamine, 8-oxypalmatine, and jatrorrhizine were 24.9 mg/g, 6.35 mg/g, 435 μg/g, 435 μg/g, 288 μg/g, 44.4 μg/g, 22.5 μg/g, 21.1 μg/g, 15.8 μg/g, 9.30 μg/g, and 8.75 μg/g, respectively. Multivariate analysis, including principal component analysis (PCA), orthogonal partial least square method-discriminant analysis (OPLS-DA), and hierarchical cluster analysis (HCA), were performed to characterize the importance and differences among these alkaloids in S. acutum stem samples. As a result, sinomenine, magnoflorine, coclaurine, acutumine, and higenamine are proposed as chemical markers for quality control. Higenamine and coclaurine are also recommended as chemical markers for safety control. This report provides five alkaloids that can be used as chemical markers for improving the quality and safety control of S. acutum stem. It also alerts athletes to avoid the risks associated with consuming S. acutum stem.
Project description:Purpose: The goal of this study is to compare endothelial small RNA transcriptome to identify the target of OASL under basal or stimulated conditions by utilizing miRNA-seq. Methods: Endothelial miRNA profilies of siCTL or siOASL transfected HUVECs were generated by illumina sequencing method, in duplicate. After sequencing, the raw sequence reads are filtered based on quality. The adapter sequences are also trimmed off the raw sequence reads. rRNA removed reads are sequentially aligned to reference genome (GRCh38) and miRNA prediction is performed by miRDeep2. Results: We identified known miRNA in species (miRDeep2) in the HUVECs transfected with siCTL or siOASL. The expression profile of mature miRNA is used to analyze differentially expressed miRNA(DE miRNA). Conclusions: Our study represents the first analysis of endothelial miRNA profiles affected by OASL knockdown with biologic replicates.