Project description:We generated the complete chloroplast genome sequence of Sinomenium acutum, a species of the Menispermaceae family, and characterized from the de novo assembly of Illumina HiSeq paired-end sequencing data. The total length of the chloroplast genome of S. acutum was 162,787 bp with a large single-copy (LSC) region of 91,430 bp, a small single-copy (SSC) region of 21,245 bp, and a pair of identical inverted repeat regions (IRs) of 25,056 bp. The total of 131 genes were annotated in the chloroplast genome of Sinomenium acutum, including 85 protein-coding genes, 38 transfer RNA (tRNA) genes, and 8 ribosomal RNA (rRNA) genes. The phylogenetic analysis of S. acutum with 18 related species revealed the closest taxonomical relationship with Menispermum dauricum in the Menispermaceae family.
| S-EPMC7783043 | biostudies-literature
Project description:Bacterial community in Sinomenium acutum
| PRJNA1287093 | ENA
Project description:Transcriptome analysis of Sinomenium acutum
Project description:Sinomenium acutum, a traditional medicinal plant, has been utilized for millennia to alleviate various forms of rheumatic pain symptoms. The structurally diverse benzylisoquinoline alkaloids (BIAs) found in S. acutum are the primary contributors to its therapeutic efficacy, with sinomenine being the principal bioactive constituent. In this study, we employed an integrated transcriptomic and metabolomic approach to investigate BIA biosynthesis in S. acutum. Transcriptome sequencing, functional annotation, and differential gene expression analysis were combined with metabolite profiling to predict biosynthetic pathways of structurally diverse BIAs and screen candidate genes. Metabolomic analysis revealed significant stem-enriched accumulation of BIAs compared to leaves. Furthermore, we proposed a biosynthetic pathway of sinomenine and hypothesized that 34 key candidate genes, including cytochrome P450 (CYP450s), reductases, 2-oxoglutarate-dependent dioxygenases (2-ODDs), and O-methyltransferases (O-MTs), might be involved in its biosynthetic process. This study provides a foundation for understanding the biosynthesis of structurally diverse BIA compounds in S. acutum and offers critical insights for future characterization of functional genetic elements.
Project description:Sinomenium acutum (SA) has long been used as a traditional medicine in China, Japan, and Korea to treat a wide range of diseases. It has been traditionally used to ameliorate inflammation and improve blood circulation. However, its role in platelet activation has not been thoroughly investigated. Hence, we conducted this study to assess the potential inhibitory effect of SA on platelet aggregation and thrombus formation. The antiplatelet activities of SA were evaluated by assessing platelet aggregation, granular secretion, intracellular Ca2+ mobilization, and the Glycoprotein (GP) VI-mediated signalosome. The thrombosis and bleeding time assays were used to investigate the effect of SA (orally administered at 50 and 100 mg/kg for seven days) in mice. SA treatment at concentrations of 50, 100, and 200 μg/mL significantly reduced GPVI-mediated platelet aggregation, granular secretion, and intracellular Ca2+ mobilization. Further biochemical studies revealed that SA inhibited spleen tyrosine kinase, phospholipase Cγ2, phosphatidylinositol 3-kinase, and AKT phosphorylation. Interestingly, oral administration of SA efficiently ameliorated FeCl3-induced arterial thrombus formation without prolonging the tail bleeding time. These findings suggest that SA has beneficial effects in thrombosis and hemostasis. Therefore, SA holds promise as an effective therapeutic agent for the treatment of thrombotic diseases.
Project description:Benzylisoquinoline alkaloids (BIAs) are a large family of plant natural products with important pharmaceutical applications. Sinomenium acutum is a medicinal plant from the Menispermaceae family and has been used to treat rheumatoid arthritis for hundreds of years. Sinomenium acutum contains more than 50 BIAs, and sinomenine is a representative BIA from this plant. Sinomenine was found to have preventive and curative effects on opioid dependence. Despite the broad applications of S. acutum, investigation on the biosynthetic pathways of BIAs from S. acutum is limited. In this study, we comprehensively analyzed the transcriptome data and BIAs in the root, stem, leaf, and seed of S. acutum. Metabolic analysis showed a noticeable difference in BIA contents in different tissues. Based on the study of the full-length transcriptome, differentially expressed genes, and weighted gene co-expression network, we proposed the biosynthetic pathways for a few BIAs from S. acutum, such as sinomenine, magnoflorine, and tetrahydropalmatine, and screened candidate genes involved in these biosynthesis processes. Notably, the reticuline epimerase (REPI/STORR), which converts (S)-reticuline to (R)-reticuline and plays an essential role in morphine and codeine biosynthesis, was not found in the transcriptome data of S. acutum. Our results shed light on the biogenesis of the BIAs in S. acutum and may pave the way for the future development of this important medicinal plant.