Project description:Plants coexist in close proximity with numerous microorganisms in their rhizosphere. With certain microorganisms, plants establish mutualistic relationships that can confer physiological benefits to the interacting organisms, including enhanced nutrient assimilation or increased stress tolerance. The root-colonizing endophytic fungi Penicillium chrysogenum, Penicillium minioluteum, and Serendipita indica have been reported to enhance the drought stress tolerance of plants. However, to date, the molecular mechanisms triggered by these fungi in plants remain unexplored. This study presents a comparative analysis of the effects on mock- and fungus-infected tomato plants (var. Moneymaker) under drought stress conditions (40% field capacity) and control conditions (100% field capacity). The findings provide evidence for the induction of common response modules by the fungi.
Project description:Verbena bonariensis is a species with excellent garden plant, good environmental adaptability and great potential for future development.Cadmium has caused serious heavy metal pollution in the soil, which has posed a great threat to plant growth. In this study, Illumina sequencing technology was used to sequence the transcriptome of Verbena bonariensis leaf under normal and Cd stress, respectively. In total, 95,013 transcripts and 63021 genes with an average length of 923 bp and 1,246 bp were constructed from the clean sequence reads, respectively. And 1037 DEGs were found in response to cadmium treatment, of which 10 were selected for qRT-PCR. In conclusion, this study first identified the Verbena bonariensis as a heavy metal tolerant plant and provided the first large-scale transcriptional data set in response to cadmium stress. Our research will help to understand the mechanism of resistance to Cd in the Verbena bonariensis and provide clues for further studies on the relationships between plants and heavy metals in other Verbenaceae plants.
Project description:Elevated atmospheric CO2 can influence the structure and function of rhizosphere microorganisms by altering root growth and the quality and quantity of compounds released into the rhizosphere via root exudation. In these studies we investigated the transcriptional responses of Bradyrhizobium japonicum cells growing in the rhizosphere of soybean plants exposed to elevated atmospheric CO2. The results of microarray analyses indicated that atmospheric elevated CO2 concentration indirectly influences on expression of large number of Bradyrhizobium genes through soybean roots. In addition, genes involved in C1 metabolism, denitrification and FixK2-associated genes, including those involved in nitrogen fixation, microanaerobic respiration, respiratory nitrite reductase, and heme biosynthesis, were significantly up-regulated under conditions of elevated CO2 in the rhizosphere, relative to plants and bacteria grown under ambient CO2 growth conditions. The expression profile of genes involved in lipochitinoligosaccharide Nod factor biosynthesis and negative transcriptional regulators of nodulation genes, nolA and nodD2, were also influenced by plant growth under conditions of elevated CO2. Taken together, results of these studies indicate that growth of soybeans under conditions of elevated atmospheric CO2 influences gene expressions in B. japonicum in the soybean rhizosphere, resulting in changes to carbon/nitrogen metabolism, respiration, and nodulation efficiency.
Project description:Understanding the environmental factors that shape microbial communities is crucial, especially in extreme environments, like Antarctica. Two main forces were reported to influence Antarctic soil microbes: birds and plants. Both birds and plants are currently undergoing unprecedented changes in their distribution and abundance due to global warming. However, we need to clearly understand the relationship between plants, birds and soil microorganisms. We therefore collected rhizosphere and bulk soils from six different sampling sites subjected to different levels of bird influence and colonized by Colobanthus quitensis and Deschampsia antarctica in the Admiralty Bay, King George Island, Maritime Antarctic. Microarray and qPCR assays targeting 16S rRNA genes of specific taxa were used to assess microbial community structure, composition and abundance and analyzed with a range of soil physico-chemical parameters. The results indicated significant rhizosphere effects in four out of the six sites, including areas with different levels of bird influence. Acidobacteria were significantly more abundant in soils with little bird influence (low nitrogen) and in bulk soil. In contrast, Actinobacteria were significantly more abundant in the rhizosphere of both plant species. At two of the sampling sites under strong bird influence (penguin colonies), Firmicutes were significantly more abundant in D. antarctica rhizosphere but not in C. quitensis rhizosphere. The Firmicutes were also positively and significantly correlated to the nitrogen concentrations in the soil. We conclude that the microbial communities in Antarctic soils are driven both by bird and plants, and that the effect is taxa-specific.
Project description:Thermoacidophilic archaea are found in heavy metal-rich environments and, in some cases, these microorganisms are causative agents of metal mobilization through cellular processes related to their bioenergetics. Given the nature of their habitats, these microorganisms must deal with the potentially toxic effect of heavy metals. Here, we show that two thermoacidophilic Metallosphaera species with nearly identical (99.99%) genomes differed significantly in their sensitivity and reactivity to uranium. M. prunae, isolated from a smoldering heap on a uranium mine in Thuringen, Germany, could be viewed as a “spontaneous mutant” of M. sedula, an isolate from Pisciarelli solfatara near Naples, Italy. M. prunae tolerated U3O8 and U(VI) to a much greater extent than M. sedula. Within 15 minutes following exposure to “U(VI) shock”, M. sedula, and not M. prunae, exhibited transcriptomic features associated with severe stress response. Furthermore, within 15 minutes post-U(VI) shock, M. prunae, and not M. sedula, showed evidence of substantial degradation of cellular RNA. This suggested that transcriptional and translational processes were aborted as a dynamic mechanism for resisting U toxicity; by 60 minutes post-U(VI) shock, RNA integrity in M. prunae recovered, and known modes for heavy metal resistance were activated. In addition, M. sedula rapidly oxidized solid U3O8 to soluble U(VI) for bioenergetic purposes, a chemolithoautotrophic feature not previously reported. M. prunae, however, did not solubilize solid U3O8 to any significant extent, thereby not exacerbating U(VI) toxicity. These results point to uranium extremophily as an adaptive, rather than intrinsic, feature for Metallosphaera species, driven by environmental factors.
2012-09-25 | GSE40796 | GEO
Project description:Ginseng plants and rhizosphere microorganisms
Project description:For environmental safety, the high concentration of heavy metals in the soil should be removed. Cadmium (Cd), one of the heavy metals polluting the soil while its concentration exceeds 3.4 mg/kg in soil. Potential use of cotton for remediating heavy Cd-polluted soils is available while its molecular mechanisms of Cd tolerance remains unclear in cotton. In this study, transcriptome analysis was used to identify the Cd tolerance genes and their potential mechanism in cotton. Finally 4,627 differentially expressed genes (DEGs) in the root, 3,022 DEGs in the stem and 3,854 DEGs in leaves were identified through RNA-Seq analysis, respectively. These genes contained heavy metal transporter genes (ABC, CDF, HMA, etc.), annexin genes, heat shock genes (HSP) amongst others. Gene ontology (GO) analysis showed that the DEGs were mainly involved in the oxidation-reduction process and metal ion binding. The DEGs mainly enriched in two pathways, the influenza A and the pyruvate pathway. GhHMAD5 protein, containing a heavy-metal domain, was identified in the pathway to transport or to detoxify the heavy ion. GhHMAD5-overexpressed plants of Arabidopsis thaliana showed the longer roots compared with the control. Meanwhile, GhHMAD5-silenced cotton plants showed more sensitive to Cd stress compared with the control. The results indicated that GhHMAD5 gene is remarkably involved in Cd tolerance, which gives us a preliminary understanding of Cd tolerance mechanisms in upland cotton. Overall, this study provides valuable information for the use of cotton to remediate the soil polluted with heavy metals.
Project description:Elevated atmospheric CO2 can influence the structure and function of rhizosphere microorganisms by altering root growth and the quality and quantity of compounds released into the rhizosphere via root exudation. In these studies we investigated the transcriptional responses of Bradyrhizobium japonicum cells growing in the rhizosphere of soybean plants exposed to elevated atmospheric CO2. Transciptomic expression profiles indicated that genes involved in carbon/nitrogen metabolism, and FixK2-associated genes, including those involved in nitrogen fixation, microanaerobic respiration, respiratory nitrite reductase, and heme biosynthesis, were significantly up-regulated under conditions of elevated CO2, relative to plants and bacteria grown under ambient CO2 growth conditions. The expression profile of genes involved in lipochitinoligosaccharide Nod factor biosynthesis and negative transcriptional regulators of nodulation genes, nolA and nodD2, were also influenced by plant growth under conditions of elevated CO2. Taken together, results of these studies indicate that growth of soybeans under conditions of elevated atmospheric CO2 influences gene expressions in B. japonicum in the soybean rhizosphere, resulting in changes to carbon/nitrogen metabolism, respiration, and nodulation efficiency. Bradyrhizobium japonicum strains were grown in the soybean rhizosphere under two different CO2 concentrations. Transcriptional profiling of B. japonicum was compared between cells grown under elevated CO2 and ambient conditions. Four biological replicates of each treatment were prepared, and four microarray slides were used for each strain.
Project description:Xiangjiang River (Hunan, China) has been contaminated with heavy metal for several decades by surrounding factories. However, little is known about the influence of a gradient of heavy metal contamination on the diversity, structure of microbial functional gene in sediment. To deeply understand the impact of heavy metal contamination on microbial community, a comprehensive functional gene array (GeoChip 5.0) has been used to study the functional genes structure, composition, diversity and metabolic potential of microbial community from three heavy metal polluted sites of Xiangjiang River.