Project description:Gluten-containing grains cause adverse health effects in individuals with celiac disease. Fermentation of these grains results in gluten-derived polypeptides with largely uncharacterized sizes and sequences, which may still trigger an immune response. This research used N-terminal labeling mass spectrometry to characterize protein hydrolysates during each stage of bench-scale brewing, including malting, mashing, boiling, fermentation, and aging. Gluten hydrolysates from each brewing step were tracked and the immunotoxic potential was evaluated in silico. The results indicate that proteolysis and precipitation of gliadins occurring during brewing differ by protein region and brewing stage. The termini of gliadins were hydrolyzed throughout the entire brewing process, but the central regions remained relatively stable. Most hydrolysis occurred during malting, and most precipitation occurred during boiling. The addition of yeast yielded new cleavage sites but did not result in complete hydrolysis. Consistent detection of peptides within the clinically important regions of gliadin corroborated the hydrolytic resistance of this region. N-terminal labeling mass spectrometry served as a novel approach to track the fate of gliadin/gluten throughout bench-scale brewing. Consistently identified fragments could serve as improved targets for detection of hydrolyzed gluten in fermented products.
Project description:A. niger and A. oryzae are two filamentous fungi widely used in industry to produce various enzymes (e.g. pectinases, amylases) and metabolites (e.g. citric acid). Using proteomics, the co-cultivation of these two fungi in wheat bran showed an equal distribution of the two strains forming mixed colonies with a broad range of carbohydrate active enzymes produced. This stable mixed microbial system seems suitable for subsequent commercial processes such as enzyme production. XlnR knock-out strains for both aspergilli were used to study the influence of plant cell wall degrading enzyme production on the fitness of the mixed culture.
2017-02-27 | PXD005532 | Pride
Project description:Establishment of isolation and quantification method for mixed brewing microorganisms
Project description:In order to understand how P.al and P.ch respond to the environment set by V. vinifera we analyzed the transcriptomes of two fungi in axenic or mixed cultures with V. vinifera plant cells (callus culture). We could observe that these fungi respond with different strategies to the plant cell challange where P.ch induces de-toxification and translation machinery genes and P.al alters primary metabolism and induces heat shock related genes.
Project description:Gaining new knowledge through fungal monoculture responses to lignocellulose is a widely used approach that can lead to better cocktails for lignocellulose saccharification (the enzymatic release of sugars which are subsequently used to make biofuels). However, responses in lignocellulose mixed cultures are rarely studied in the same detail even though in nature fungi often degrade lignocellulose as mixed communities. Using a dual RNA-seq approach, we describe the first study of the transcriptional responses of wild-type strains of Aspergillus niger, Trichoderma reesei and Penicillium chrysogenum in two and three mixed species shake-flask cultures with wheat straw. Based on quantification of species-specific rRNA, a set of conditions was identified where mixed cultures could be sampled so as to obtain sufficient RNA-seq reads for analysis from each species. The number of differentially-expressed genes varied from a couple of thousand to fewer than one hundred. The proportion of carbohydrate active enzyme (CAZy) encoding transcripts was lower in the majority of the mixed cultures compared to the respective straw monocultures. A small subset of P. chrysogenum CAZy genes showed five to ten-fold significantly increased transcript abundance in a two-species mixed culture with T. reesei. However, a substantial number of T. reesei CAZy transcripts showed reduced abundance in mixed cultures. The highly induced genes in mixed cultures indicated that fungal antagonism was a major part of the mixed cultures. In line with this, secondary metabolite producing gene clusters showed increased transcript abundance in mixed cultures and also mixed cultures with T. reesei led to a decrease in the mycelial biomass of A. niger. Significantly higher monomeric sugar release from straw was only measured using a minority of the mixed culture filtrates and there was no overall improvement. This study demonstrates fungal interaction with changes in transcripts, enzyme activities and biomass in the mixed cultures and whilst there were minor beneficial effects for CAZy transcripts and activities, the competitive interaction between T. reesei and the other fungi was the most prominent feature of this study.
Project description:Pathogen detection microarrays analyzing honeybee samples taken after parasitization with a predatory fly, oligos correspond to specific pathogens or pathogen families of viruses, bacteria, fungi, protists, and other parasites Samples were analyzed with the E-Predict analysis package.