Project description:Triple-negative breast cancer (TNBC), lacking expression of estrogen, progesterone, and HER2 receptors, is aggressive and lacks targeted treatment options. An RNA editing enzyme, adenosine deaminase acting on RNA 1 (ADAR1), has been shown to play important roles in TNBC tumorigenesis. We posit that ADAR1 functions as a homeostatic factor protecting TNBC from internal and external pressure, including metabolic stress. We tested the hypothesis that the iron-dependent cell death pathway, ferroptosis, is a ADAR1-protected metabolic vulnerability in TNBC by showing that ADAR1 knockdown sensitizes TNBC cells to GPX4 inhibitors. By performing single-reaction monitoring-based liquid chromatography coupled to mass spectrometry (LC-MS) to measure intracellular lipid contents, we showed that ADAR1 loss increased the abundance of polyunsaturated fatty acid phospholipids (PUFA-PL), of which peroxidation is the primary driver of ferroptosis. Transcriptomic analyses led to the discovery of the proto-oncogene MDM2 contributing to the lipid remodeling in TNBC upon ADAR1 loss. A phenotypic drug screen using a ferroptosis-focused library was performed to identify FDA-approved cobimetinib as a drug-repurposing candidate to synergize with ADAR1 loss to suppress TNBC tumorigenesis. By demonstrating that ADAR1 regulates the metabolic fitness of TNBC through desensitizing ferroptosis, we aim to leverage this metabolic vulnerability to inform basic, pre-clinical, and clinical studies to develop novel therapeutic strategies for TNBC.
Project description:Ferroptosis is a form of regulated necrotic cell death controlled by glutathione peroxidase 4 (GPX4). At present, mechanisms that could predict sensitivity and/or resistance and that may be exploited to modulate this form of cell death are needed. We applied two independent approaches, a genome-wide CRISPR-based genetic screen and microarray analysis of ferroptosis-resistant cell lines to uncover acyl-CoA synthetase long-chain family member 4 (Acsl4) as an essential component for ferroptosis execution.
Project description:Erastin is a small molecular compound which inhibits the system Xc- and prevents the import of cystine, reducing glutathione (GSH) biosynthesis and glutathione peroxidase 4 (GPX4) activity, and finally inducing cell death via ferroptosis. To establish a model of Erastin induced ferroptosis in glioma cells, U87 cells were treated of Erastin (10 μM, 72 h). Combination analysis of HiChIP, ChIP-seq and RNA-seq data suggests that change of chromatin loops mediated by 3D chromatin structure regulate gene expressions in glioma ferroptosis. Genes that regulated by 3D chromatin structure include genes that were reported function in ferroptosis like MDM2 and TXRND1. We propose a new regulatory mechanism governing glioma cell ferroptosis by 3D chromatin structure.
Project description:Ferroptosis is an iron-dependent form of cell death driven by biochemical and metabolic alterations resulting in oxidation within the lipid compartment. Calcium is a potent signaling molecule ascribed to diverse cellular processes including migration, neurotransmitter function, and cell death. Here we elucidate a crucial link between calcium homeostasis and ferroptotic cell death through the identification of the tetraspanin MS4A15. Ectopic MS4A15 expression specifically protects against ferroptosis by depleting endoplasmic reticulum stores. In an unexpected connection, prolonged calcium dysregulation stimulates fundamental remodeling to ferroptosis-resistant monounsaturated and plasmalogen lipid species. Application of this discovery revealed that augmenting luminal calcium sensitizes cancer cell lines previously refractory to ferroptosis. This finding provides a unique mechanistic basis for ferroptosis sensitivity and resolves a long-standing query into the role of calcium in oxidative cell death. Manipulating calcium homeostasis offers an unprecedented strategy for overcoming therapy resistance in cancer.
Project description:Aberrant RNA-editing was observed in several human tumors, but its significance is mostly unknown. Here we show that ADAR1, a ubiquitous RNA-editing enzyme, is commonly lost in metastatic melanoma cells and specimens. Experimental ADAR1 silencing significantly alters melanoma cell morphology, facilitates proliferation and cell-cycle, and increases the tumorigenicity in-vivo. A series of ADAR1 truncation mutants establishes a novel RNA-editing-independent role for ADAR1 in controlling the nuclear and cytoplasmic processing steps of miRNA biogenesis. Altered expression of ADAR1-controled miRNAs accounts for the observed phenotype. We show that the oncogenic miR-17-5p endogenously regulates ADAR1 expression and that its genomic sequence is frequently amplified in melanoma to overexpress the mature miR-17-5p form. ADAR1 and miR-17-5p are ubiquitously expressed, suggesting the generality of this mechanism. Melanoma cell line expressing low ADAR1 levels (ADAR1-Knockdown) using shRNA technique were selected for RNA extraction and hybridization on Affymetrix microarrays. We sought to examine the alterations in the genes and microRNA expression profile in the manipulated cell system, due to ADAR1 possible involvement cancer development. To that end, we selected ADAR1-knockdown (ADAR1-KD) cells that demonstrated an enhanced aggressive phenotype both in vivo and in vitro as compared to the control cells (Control).
Project description:RNAseq analysis of cell lines with ADAR1-p150 and ADAR1-p110 knock-outs and primary human tissue samples (from GSE57353 and GSE99392 data sets) to identify sites of ADAR1 editing
Project description:Ferroptosis is an iron-dependent regulated cell death caused by the accumulation of lipid peroxidation for the uncontrolled metabolism. Serum, as the major medium for the cultured cells, resembles the contents of the extracellular fluid in vivo and provides biomolecules for cellular metabolism. The efficiency of ferroptosis induction is influenced by several factors including the extracellular environment. However, the effect of serum on ferroptosis remains largely unclear. We found that cells cultured in different serums have varying efficiencies in ferroptosis induction. By purifying and identifying active serum components, we discovered that serum protein apolipoprotein H (APOH) play essential role in inhibiting ferroptosis. Moreover, APOH activates the phosphoinositide 3-kinase (PI3K)/AKT-Sterol regulatory element-binding proteins (SREBPs) pathway. SREBPs upregulate the stearoyl-CoA desaturase (SCD) increasing cellular monounsaturated fatty acid-containing phospholipids (MUFA-PLs), leading to ferroptosis inhibition. Our findings indicate that APOH, as an extracellular protein, plays an important role in cellular lipid metabolism and inhibition of ferroptosis, thus may having therapeutic applications in cancer treatment and ferroptosis-related diseases.
Project description:The intimate association between obesity and type II diabetes urges for a deeper understanding of adipocyte function. We and others have previously delineated a role for the tumor suppressor p53 in adipocyte biology. Here, we show that mice haploinsufficient for MDM2, a key regulator of p53, in their adipose stores suffer from overt obesity, insulin resistance, and hepatic steatosis. These mice had decreased levels of circulating palmitoleic acid (non-esterified fatty acid (NEFA) 16:1) concomitant with impaired visceral adipose tissue expression of Scd1 and Ffar4. A similar decrease in Scd and Ffar4 expression was found in in vitro differentiated adipocytes with perturbed MDM2 expression. Mechanistically, lowered MDM2 levels led to nuclear exclusion of the transcriptional cofactors, MORC2 and LIPIN1, thus hampering adipocyte function by antagonizing LIPIN1-mediated PPARγ coactivation. Collectively, these data argue for a p53-independent role of MDM2 in controlling adipocyte function through LIPIN1.
Project description:The amino acid cysteine and its oxidized dimeric form cystine are commonly believed to be synonymous in metabolic functions. Cyst(e)ine depletion not only induces amino acid response, but also triggers ferroptosis, a non-apoptotic cell death. Here we report that, unlike general amino acid starvation, cyst(e)ine deprivation triggers ATF4 induction at the transcriptional level. Unexpectedly, it is the shortage of lysosomal cystine, but not the cytosolic cysteine, that elicits the adaptative ATF4 response. The lysosome-nucleus signaling pathway involves the aryl hydrocarbon receptor (AhR) that senses lysosomal cystine via the kynurenine pathway. A blockade of lysosomal cystine efflux attenuates ATF4 induction and sensitizes ferroptosis. To potentiate ferroptosis in cancer, we develop a synthetic mRNA reagent CysRx that converts cytosolic cysteine to lysosomal cystine. CysRx maximizes cancer cell ferroptosis and effectively suppresses tumor growth in vivo. Thus, intracellular nutrient reprogramming has the potential to induce selective ferroptosis in cancer without systematic perturbation.
Project description:ADAR1 regulates the accumulation of endeognouse double-stranded RNA (dsRNA), a pro-inflammatory/innate immune activator. The purpose of this study was to measure the effects of ADAR1 suppression in human astrocytes and determine RNAs regulated by ADAR1. Primary human astrocytes were culture and transfected with a scramble or ADAR1 siRNA. RNA was isolated from these cells for total RNA-seq to analyze changes in gene/repetitive element expression and RNA editing.