Project description:Full Title: Transition from Compensated Hypertrophy to Systolic Heart Failure in the Spontaneously Hypertensive Rat: Structure, Function, and Transcript Analysis Gene expression changes and left ventricular remodeling associated with the transition to systolic heart failure (HF) were determined in the spontaneously hypertensive rat (SHR). By combining transcriptomics of left ventricles from six SHR with HF with changes in function and structure we aimed to better understand the molecular events underlying the onset of systolic HF compared to six age-matched, SHR with compensated hypertrophy. Left ventricle (LV) ejection fraction was depressed (82±4 to 52±3 %) in compensated vs. failing animals. Systolic blood pressure decreased and LV end-diastolic and systolic volume increased with HF. Failing SHR hearts also demonstrated increases in left and right ventricular mass relative to non-failing SHRs.  LV papillary muscle force development and shortening velocity decreased, β-adrenergic responsiveness was depressed, myocardial stiffness and myocardial fibrosis increased with HF relative to non-failing animals. Initial micro-array analysis revealed that 1,431 transcripts were differentially expressed with HF compared to non-failing SHR (p<0.05). Of the identified transcripts, lipopolysaccharide binding protein, the most highly expressed transcript with HF, was negatively correlated to myocardial force while elevated expression of the collagen cross-linking enzyme lysyl oxidase correlated positively with muscle stiffness. Besides these individual transcripts, gene set enrichment analysis (GSEA) identified multiple enriched pathways with HF, most prominent of the altered signaling pathways involved TGF-β and insulin signaling. GESA analysis additionally identified altered gene sets involving inflammation, oxidative stress, cell degradation and cell death, among others (all p<0.01). In contrast to diastolic HF where few transcripts are reported to be altered, our data indicate multiple genes and pathways involved in a variety of biological processes characterize the onset of systolic HF, consistent with many functional and structural changes present in the failing hypertensive heart. Comprehensive gene expression profiling of heart failure Rat model vs control.
Project description:Full Title: Transition from Compensated Hypertrophy to Systolic Heart Failure in the Spontaneously Hypertensive Rat: Structure, Function, and Transcript Analysis Gene expression changes and left ventricular remodeling associated with the transition to systolic heart failure (HF) were determined in the spontaneously hypertensive rat (SHR). By combining transcriptomics of left ventricles from six SHR with HF with changes in function and structure we aimed to better understand the molecular events underlying the onset of systolic HF compared to six age-matched, SHR with compensated hypertrophy. Left ventricle (LV) ejection fraction was depressed (82±4 to 52±3 %) in compensated vs. failing animals. Systolic blood pressure decreased and LV end-diastolic and systolic volume increased with HF. Failing SHR hearts also demonstrated increases in left and right ventricular mass relative to non-failing SHRs. LV papillary muscle force development and shortening velocity decreased, β-adrenergic responsiveness was depressed, myocardial stiffness and myocardial fibrosis increased with HF relative to non-failing animals. Initial micro-array analysis revealed that 1,431 transcripts were differentially expressed with HF compared to non-failing SHR (p<0.05). Of the identified transcripts, lipopolysaccharide binding protein, the most highly expressed transcript with HF, was negatively correlated to myocardial force while elevated expression of the collagen cross-linking enzyme lysyl oxidase correlated positively with muscle stiffness. Besides these individual transcripts, gene set enrichment analysis (GSEA) identified multiple enriched pathways with HF, most prominent of the altered signaling pathways involved TGF-β and insulin signaling. GESA analysis additionally identified altered gene sets involving inflammation, oxidative stress, cell degradation and cell death, among others (all p<0.01). In contrast to diastolic HF where few transcripts are reported to be altered, our data indicate multiple genes and pathways involved in a variety of biological processes characterize the onset of systolic HF, consistent with many functional and structural changes present in the failing hypertensive heart.
Project description:The intercalated disc of cardiac myocytes is emerging as a crucial structure in the heart. Loss of intercalated disc proteins like N-cadherin causes lethal cardiac abnormalities, mutations in intercalated disc proteins cause human cardiomyopathy. A comprehensive screen for novel mechanisms in failing hearts demonstrated that expression of the lysosomal integral membrane protein-2 (LIMP-2) is increased in cardiac hypertrophy and heart failure in both rat and human myocardium. Complete loss of LIMP-2 in genetically engineered mice did not affect cardiac development; however these LIMP-2 null mice failed to mount a hypertrophic response to increased blood pressure but developed cardiomyopathy. Disturbed cadherin localization in these hearts suggested that LIMP-2 has important functions outside lysosomes. Indeed, we also find LIMP-2 in the intercalated disc, where it associates with cadherin. RNAi-mediated knockdown of LIMP-2 decreases the binding of phosphorylated b-catenin to cadherin, while overexpression of LIMP-2 has the opposite effect. Taken together, our data show that lysosomal integrated membrane protein-2 is crucial to mount the adaptive hypertrophic response to cardiac loading. We demonstrate a novel role for LIMP-2 as an important mediator of the intercalated disc. Experiment Overall Design: overall design: Experiment Overall Design: 3 groups of rats, 1 sample per rat: Experiment Overall Design: - compensated = Ren2 rat, hypertensive, no heart failure (N=6) Experiment Overall Design: - failure = Ren2 rat, hypertensive, no heart failure (N=4) Experiment Overall Design: - SD = control group, non-hypertensive (N=4)
Project description:We aimed to identify gene variants associated with heart failure by using a rat model of the human disease. We performed invasive cardiac hemodynamic measurements in F2 crosses between spontaneously hypertensive heart failure rats (SHHF) and reference strains. We combined linkage analyses with genome-wide expression profiling .
Project description:Cardiac-specific TNF-alpha transgenic mice are an excellent model to study the pathologenesis of heart failure. Affymetrix U74V2A was used to analyze the gene expression profile of male and female wildtype FVB and TNF-alpha transgenic mice at the time point of compensated hypertrophy and dilated heart failure. 3 week, 13 week and 40 week samples examined.
Project description:To investigate molecular mechanisms involved in the development of cardiac hypertrophy and heart failure, a tetracycline-regulated transgenic system to conditionally switch a constitutively-active form of the Akt1 protein kinase on or off in the adult heart was developed. Short-term activation (2 weeks) of Akt1 resulted in completely reversible hypertrophy with maintained contractility. In contrast, chronic Akt1 activation (6 weeks) induced extensive cardiac hypertrophy, severe contractile dysfunction, and massive interstitial fibrosis. The focus of this study was to create a transcript expression profile of the heart as it undergoes reversible Akt1-mediated hypertrophy and during the transition from compensated hypertrophy to heart failure. Heart tissue was analyzed before transgene induction, 2 weeks after transgene induction, 2 weeks of transgene induction followed by 2 days of repression, 6 weeks after transgene induction and 6 weeks of transgene induction followed by 2 weeks of repression. Acute over expression of Akt1 (2 weeks) leads to changes in the expression of 826 transcripts relative to non-induced hearts, whereas chronic induction (6 weeks) led to changes in the expression of 1611, of which 65% represented transcripts that were regulated during the pathological phase of heart growth. Another set of genes identified were uniquely regulated during heart regression but not growth, indicating that non-overlapping transcription programs participate in the processes of cardiac hypertrophy and atrophy. These data define the gene regulatory programs downstream of Akt that control heart size and contribute to the transition from compensatory hypertrophy to heart failure. Keywords: transgenic mice, Akt1, time course, cardiac hypertrophy and contractile dysfunction, DNA microarrays
Project description:To investigate molecular mechanisms involved in the development of cardiac hypertrophy and heart failure, a tetracycline-regulated transgenic system to conditionally switch a constitutively-active form of the Akt1 protein kinase on or off in the adult heart was developed. Short-term activation (2 weeks) of Akt1 resulted in completely reversible hypertrophy with maintained contractility. In contrast, chronic Akt1 activation (6 weeks) induced extensive cardiac hypertrophy, severe contractile dysfunction, and massive interstitial fibrosis. The focus of this study was to create a transcript expression profile of the heart as it undergoes reversible Akt1-mediated hypertrophy and during the transition from compensated hypertrophy to heart failure. Heart tissue was analyzed before transgene induction, 2 weeks after transgene induction, 2 weeks of transgene induction followed by 2 days of repression, 6 weeks after transgene induction and 6 weeks of transgene induction followed by 2 weeks of repression. Acute over expression of Akt1 (2 weeks) leads to changes in the expression of 826 transcripts relative to non-induced hearts, whereas chronic induction (6 weeks) led to changes in the expression of 1611, of which 65% represented transcripts that were regulated during the pathological phase of heart growth. Another set of genes identified were uniquely regulated during heart regression but not growth, indicating that non-overlapping transcription programs participate in the processes of cardiac hypertrophy and atrophy. These data define the gene regulatory programs downstream of Akt that control heart size and contribute to the transition from compensatory hypertrophy to heart failure. Experiment Overall Design: Gene expression data from DTG-positive mouse hearts were examined before the induction of the transgene Akt1 (time point 1), 2 weeks after the induction of the transgene Akt1(time point 2), 2 weeks after the induction of the transgene Akt1 and 2 days after the repression of the transgene Akt1 (time point 3), 6 weeks after the induction of the transgene Akt1(time point 4) and 6 weeks after the induction of the transgene Akt1 and 2 weeks after the repression of the transgene Akt1 (time point 5). N = 3 to 4 sets of independent hybridizations from individual mice were performed for each time point.
Project description:In the present study we aimed to investigate whether alterations in left ventricular myocardial micro-RNA (miRNA) expression and post-transcriptional gene regulation might contribute to the development of systolic heart failure in aortic-banded (AB) rats. Hence, in young adult male Sprague-Dawley rats abdominal AB was carried out. In 10% of the AB animals, congestive systolic heart failure developed after 12 weeks of follow-up. These rats made up the AB-heart failure group. On the other hand, in the majority of the AB rats (almost 90%), heart failure signs were not present. These rats made up the AB-hypertrophy group. Additionally, sham-operated animals served as controls. miRNA profiling was conducted in all the three experimental groups. Based on the NGS data, network theoretical miRNA-target analysis was than performed to predict target genes. The mRNA expression of the predicted genes were finally measured by qPCR.
Project description:An important event in the pathogenesis of heart failure is the development of pathological cardiac hypertrophy. In cultured cardiac cardiomyocytes, the transcription factor Gata4 is required for agonist-induced cardiomyocyte hypertrophy. We hypothesized that in the intact organism Gata4 is an important regulator of postnatal heart function and of the hypertrophic response of the heart to pathological stress. To test this hypothesis, we studied mice heterozygous for deletion of the second exon of Gata4 (G4D). At baseline, G4D mice had mild systolic and diastolic dysfunction associated with reduced heart weight and decreased cardiomyocyte number. After transverse aortic constriction (TAC), G4D mice developed overt heart failure and eccentric cardiac hypertrophy, associated with significantly increased fibrosis and cardiomyocyte apoptosis. Inhibition of apoptosis by overexpression of the insulin-like growth factor 1 receptor prevented TAC-induced heart failure in G4D mice. Unlike WT-TAC controls, G4D-TAC cardiomyocytes hypertrophied by increasing in length more than width. Gene expression profiling revealed upregulation of genes associated with apoptosis and fibrosis, including members of the TGF? pathway. Our data demonstrate that Gata4 is essential for cardiac function in the postnatal heart. After pressure overload, Gata4 regulates the pattern of cardiomyocyte hypertrophy and protects the heart from load-induced failure. Experiment Overall Design: We reasoned that if Gata4 was a crucial regulator of pathways necessary for cardiac hypertrophy, then modest reductions of Gata4 activity should result in an observable cardiac phenotype. To test this hypothesis, we used gene targeted mice that express reduced levels of Gata4. We characterized these mice at baseline and after pressure Experiment Overall Design: overload.