Project description:Regulation of embryonic liver growth remains largely elusive. Progranulin has been discussed in pathological liver growth; however, the functional role of Pgrn in embryonic liver growth has never been addressed. Knockdown of GrnA, the orthologue of mammalian pgrn in zebrafish, displayed a deficient hepatic outgrowth during hepatogenesis. Expression profiles manifested that pgrn-deficiency impaired hepatogenesis associated with dysregulation of Met signaling. Pgrn regulates hepatic expression of Met was further verified in vitro and in vivo. These results indicate that Pgrn is a novel factor required for embryonic hepatic outgrowth and reveal a novel link between Pgrn and Met signaling. To explore the GrnA induced genomic responses during hepatic outgrowth, mRNA expression profiles were compared from grnA morphants and control embryos using zebrafish 14K oligonucleotide microarray at 72 hpf, when hepatocytes were rapid proliferating.
Project description:Regulation of embryonic liver growth remains largely elusive. Progranulin has been discussed in pathological liver growth; however, the functional role of Pgrn in embryonic liver growth has never been addressed. Knockdown of GrnA, the orthologue of mammalian pgrn in zebrafish, displayed a deficient hepatic outgrowth during hepatogenesis. Expression profiles manifested that pgrn-deficiency impaired hepatogenesis associated with dysregulation of Met signaling. Pgrn regulates hepatic expression of Met was further verified in vitro and in vivo. These results indicate that Pgrn is a novel factor required for embryonic hepatic outgrowth and reveal a novel link between Pgrn and Met signaling.
Project description:Purpose: Construction of 3D zebrafish spatial transcriptomics data for studying the establishment of AP axis. Methods: We performed serial bulk RNA-seq data of zebrafish embryo at three development points. Using the published spatial transcriptomics data as references, we implemented Palette to infer spatial gene expression from bulk RNA-seq data and constructed 3D embryonic spatial transcriptomics. The constructed 3D transcriptomics data was then projected on zebrafish embryo images with 3D coordinates, establishing a spatial gene expression atlas named Danio rerio Asymmetrical Maps (DreAM). Results: DreAM provides a powerful platform for visualizing gene expression patterns on zebrafish morphology and investigating spatial cell-cell interactions. Conclusions: Our work used DreAM to explore the establishment of anteroposterior (AP) axis, and identified multiple morphogen gradients that played essential roles in determining cell AP positions. Finally, we difined a hox score, and comprehensively demonstrated the spatial collinearity of Hox genes at single-cell resolution during development.