Project description:Streptococcus suis 2 Rgg-dependent transcription was analyzed. Microarray analysis was performed using RNA samples isolated from Streptococcus suis 2 wild-type strain 05ZYH33 as well as RNA isolated from 05ZYH33 rgg isogenic mutant strain during postexponential phases of growth.
Project description:Streptococcus suis serotype 2 (SS2) is able to cause human infections ranging from superficial wounded skin infections to severe invasive infections such as meningitis and streptococcal toxic shock-like syndrome (STSLS). During its infection cycle, SS2 must acclimatize itself to temperature shift. Herein, a whole-genome DNA microarray was used to investigate the global transcriptional regulation of an invasive SS2 strain grown to late-exponential phase at 29 or 40°C relative to 37°C. The detecting differentially regulated genes included those encoding virulence factors, antigenic proteins, ABC transporters and unknown functions. Our data provided a global profile of gene transcription induced by temperature alteration and shed light on some unforeseen lines for further pathogenesis investigation.
Project description:To investigate the effect of CodY mutation on the gene expression in Streptococcus suis serotype 2 SC19 strain, we have employed whole genome microarray expression profiling as a discovery platform to identify genes regulated by CodY mutation. DNA microarray analysis was performed using an Agilent custom-designed oligonucleotide microarray. Based upon the whole genome sequence of SC19 , specific 60-mer oligonucleotide probes were designed using eArray (https://earray.chem.agilent.com/earray/), to cover all annotated genes. Probes were printed seven times on microarray slides. Three biological replicates of total RNA from two wild type strains and from two codY mutant strains were amplified and labeled with Cy3-CTP using Low Input Quick Amp Labeling Kit, one-color(Agilent technologies, US), following the manufacturer’s instructions. Labeled cRNA was purified using the RNeasy mini kit (Qiagen). After fragmentation, microarray slides were hybridized with 600 ng Cy3-labeled cRNA. Hybridization was performed at 65 °C for 17 h with rotation at 10 rpm. Microarray slides were washed and scanned by an Agilent Microarray Scanner (G2565BA). Those genes with greater than two-fold change ratios were regarded as differentially expressed genes. codY mutation induced gene expression in Streptococcus suis serotype 2 SC19 was detected in two wild type and two codY mutated strain of Streptococcus suis serotype 2.
Project description:Streptococcus suis is an important zoonotic pathogen that can cause meningitis and sepsis in both pigs and humans. In this study,we evaluated the genetic difference of 40 Streptococcus suis strains belonging to various sequence types by comparative genomic hybridization to identify genes associated with the variation in pathogenicity using NimbleGen’s tilling microarray platform. Application of Comparative Phylogenomics to Identify Genetic Differences Relating to Pathogenicity of Streptococcus suis
Project description:MetQ gene of Streptococcus suis serotype 2 deletion strain has attenuated antiphagocytosis. However,the mechanism of antiphagocytosis and pathogenesis of MetQ in SS2 has remained unclear. In this study, stable isotope labeling by amino acids in cell culture (SILAC) based liquid chromatography-mass spectrometry (LC-MS) and subsequent bioinformatics analysis was used to determine differentially expressed proteins of RAW264.7 cells infected with △MetQ and ZY05719, aimed at elucidating the mechanism of antiphagocytosis and innate immunity of macrophages infected by Streptococcus suis.
Project description:Swine H1N1 influenza virus and streptococcus suis serotype 2 (SS2) are two important contributors to the porcine respiratory disease complex, which have significant economic impacts. Clinically, swine influenza virus and swine streptococcus suis co-infection is common, which will increase the mortality. However, the pathogenesis of the co-infection remains largely unkown. To explore it, gene expression profiling was to performed to detect comprehensive analysis of the global host response induced by H1N1 virus infection alone, SS2 infection alone, H1N1-SS2 co-infection and PBS control.