Project description:Proteomic measurements from cyanobacteria colonies picked from the Gulf of Aqaba (Red Sea); analyzed to reveal interaction of cyanobacteria Trichodesmium and its taxonomically diverse microbial community partners. Samples were digested with trypsin, fractionated, and analyzed by LC-MS/MS. Data was searched with MS-GF+ using PNNL's DMS processing pipeline against a metagenomics FASTA file sequenced at JGI.
Project description:Metaproteomes of individual Trichodesmium colonies collected from a single location in the Carribbean sea (65.22W, 17.02N) at 17:00 local time. Some colonies were associated with auto-fluorescent mineral particles. Their proteomes were analyzed individually to investigate the effect of the minerals on colony physiology.
2021-07-05 | PXD016330 | Pride
Project description:16S sequences of Red Sea Trichodesmium colonies associated with the amoebae Trichosphaerium micrum
Project description:The filamentous diazotrophic cyanobacteria Trichodesmium spp. supply fixed nitrogen (N) to the N-depleted oligotrophic oceans where their growth is often limited by the low availability of phosphorus(P) and/or iron. Previous studies have mostly been focused on the effects of ocean acidification on Trichodesmium under nutrient sufficient or iron-limited conditions. Only a few studies have examined the impacts of ocean acidification on Trichodesmium grown at low P concentrations using non-steady-state batch cultures. Here we cultured Trichodesmium using P-limited continuous cultures (chemostat) to mimic steady-state oceanic low P condition, and used comparative NGS-derived Trichodesmium transcriptome profiling (RNA-seq) analysis to find differentially expressed genes and cellular pathways in response to acidification.
Project description:Diel proteomes of Trichodesmium colonies sampled from the field on March 10, 2018 from the Eastern subtropical Atlantic at 65 22.420W 17 0.284 N. These proteomes inform a broad study of diel proteome oscillations in Trichodesmium that support simultaneous photosynthesis and nitrogen fixation during the day.
Project description:This project presents field metaproteomics data from Trichodesmium colonies collected from the surface ocean. Most were collected from the tropical and subtropical Atlantic ocean, but there is also data from the long term Bermuda Atlantic Time Series and Hawaii Ocean Time Series. Trichodesmium is a globally important marine microbe and its growth and nitrogen fixation activity is limited by nutrient availability in the surface ocean. This dataset was generated to answer questions about limitations on Trichodesmium's growth and activity in the nature.
Project description:Background. Coral reef communities are undergoing marked declines due to a variety of stressors including climate change, eutrophication, sedimentation, and disease. The sea fan coral, Gorgonia ventalina, is a tractable study system to investigate the hypothesis that stressors compromise immunity and lead to onset of disease. Functional studies in Gorgonia ventalina immunity indicate that several key pathways and cellular responses are involved in response to natural microbial invaders, although to date the functional and regulatory pathways remain largely un-neffectors, the primary line of defense in invertebrates. This study used short-read sequencing (Illumina GAIIx) to identify genes involved in the response of G. ventalina to a naturally occurring Aplanochytrium spp. parasite. Results. De novo assembly of the G. ventalina transcriptome yielded 90,230 contigs of which 40, 142 were annotated. RNA-Seq analysis revealed 210 differentially expressed genes in sea fans exposed to the Aplanochytrium parasite. Differentially expressed genes involved in immunity include pattern recognition molecules, anti-microbial peptides, wound repair, and reactive oxygen species. Gene enrichment analysis indicated eight biological processes were enriched representing 36 genes, largely involved with protein translation and energy production. Conclusions. This is the first report using high-throughput sequencing to characterize the host response of a coral to a natural pathogen. Furthermore, we have generated the first transcriptome for a soft coral species. G. ventalina is a non-model species for which few sequences had been previously described, and we were able to annotate a large number of genes and describe their potential roles in immune function. Expression analysis revealed genes important in invertebrate innate immune pathways, as well as those whose role is previously un-described in cnidarians. This resource will be valuable in characterizing G. ventalina immune response to infection and co-infection of pathogens in the context of environmental change. RNA seq experiment using Illumina GAIIx to compare sea fans exposed to an Aplanochytrium species compared to controls