Project description:Amoroso, VB, Mendez, RA, Junio, HA., Molino, RJEJ, Pescadero, IR., Villalobos, AP. Characterization of a Natural Fungicide from an Indigenous Plant Tasmannia piperita (Hook.f.) Miers Extract: Stability, Metabolomics, and In silico Studies. Philippine Journal of Science (2021). 150 (2): 355-370
Collaboration between Secondary Metabolites Profiling Laboratory (SMPL), Institute of Chemistry, UP Diliman, and Central Mindanao University.
Project description:Proteomic measurements from cyanobacteria colonies picked from the Gulf of Aqaba (Red Sea); analyzed to reveal interaction of cyanobacteria Trichodesmium and its taxonomically diverse microbial community partners. Samples were digested with trypsin, fractionated, and analyzed by LC-MS/MS. Data was searched with MS-GF+ using PNNL's DMS processing pipeline against a metagenomics FASTA file sequenced at JGI.
Project description:Sea spray aerosols (SSAs) have profound effects on our climate and ecosystems. They also contain microbiota and biogenic molecules which could affect human health. Yet the exposure and effects of SSAs on human health remain poorly studied. Here, we exposed human lung cancer cells to extracts of a natural sea spray aerosol collected at the seashore in Belgium, a laboratory-generated SSA, the marine algal toxin homoyessotoxin and a chemical inhibitor of the mammalian target of rapamycin (mTOR) pathway. We observed significant increased expression of genes related to the mTOR pathway and Proprotein convertase subtilisin/kexin type 9 (PCSK9) after exposure to homoyessotoxin and the laboratory-generated SSA. In contrast, we observed a significant decrease in gene expression in the mTOR pathway and of PCSK9 after exposure to the natural SSA and the mTOR inhibitor, suggesting induction of apoptosis. Our results indicate that marine biogenics in SSAs interact with PCSK9 and the mTOR pathway and can be used in new potential pharmaceutical applications. Overall, our results provide a substantial molecular evidence base for potential beneficial health effects at environmentally relevant concentrations of natural SSAs.
Project description:Man-made shallow fishponds in the Czech Republic have been facing a high eutrophication since 1950s. Anthropogenic eutrophication and feeding of fish have strongly affected the physico-chemical properties of water and its aquatic community composition leading to harmful algal bloom formation. In our current study, we have characterised the phytoplankton community across three hypertrophic ponds to assess the phytoplankton dynamics during the vegetation season. We microscopically identified and quantified 29 cyanobacterial taxa comprised of non-toxigenic and toxigenic species. Further, a detailed cyanopeptides (CNPs) profiling was performed using molecular networking analysis of liquid chromatography tandem mass spectrometry (LC MS/MS) data coupled with dereplication strategy. This MS networking approach led us to putatively identify forty CNPs: fourteen anabaenopeptins, ten microcystins, five cyanopeptolins, six microginins, two cyanobactins, a dipeptide radiosumin, a cyclooctapeptide planktocyclin and epidolastatin12. The combination of molecular networking and dereplication on online global natural product social networking (GNPS) web platform has proved as a valuable approach for rapid and simultaneous detection of high number of peptides, and rapidly assessing the risk for harmful bloom.
Project description:Protegens_Pf5, P_putida_BW11M1, P_fluorescens_Pf0-1_LK194_Gac+, P_aeruginosa_TUEPA were cultivated in DMBgly except P_aurantiaca_PB-St2 was cultured in DMBgly and KsB
Noc_IFM0406 was cultivated in MM9
S_SW4 and DH12 in R4
Project description:Publication Abstract: As climate changes, sea surface temperature anomalies that negatively impact coral reef organisms continue to increase in frequency and intensity. Yet, despite widespread coral mortality, genetic diversity remains high even in those coral species listed as threatened. While this is good news in many ways it presents a challenge for the development of biomarkers that can identify resilient or vulnerable genotypes. Taking advantage of three coral restoration nurseries in Florida that serve as long-term common garden experiments, we exposed over thirty genetically distinct Acropora cervicornis colonies to hot and cold temperature shocks seasonally and measured pooled gene expression responses using RNAseq. Targeting a subset of twenty genes, we designed a high-throughput qPCR array to quantify expression in all individuals separately under each treatment with the goal of identifying predictive and/or diagnostic thermal stress biomarkers. We observed extensive transcriptional variation in the population, suggesting abundant raw material is available for adaptation via natural selection. However, this high variation made it difficult to correlate gene expression changes with colony performance metrics such as growth, mortality, and bleaching susceptibility. Nevertheless, we identified several promising diagnostic biomarkers for acute thermal stress that may improve coral restoration and climate change mitigation efforts in the future.
Project description:Sulfur metabolism in the deep-sea cold seep has been mentioned to have an important contribution to the biogeochemical cycle of sulfur in previous studies. And sulfate reducing bacteria have also been considered to be a dominant microbial population in the deep-sea cold seep and play a crucial role in this process. However, most of sulfate reducing bacteria from cold seep still cannot be purely cultured under laboratory conditions, therefore the actual sulfur metabolism pathways in sulfate reducing bacteria from the deep-sea cold seep have remained unclear. Here, we isolate and pure culture a typical sulfate reducing bacterium Desulfovibrio marinus CS1 from the sediment sample of the deep-sea cold seep in the South China Sea, which provides a probability to understand the sulfur metabolism in the cold seep.