Project description:Biomaterial infections are an increasingly alarming problem, and because of their intrinsic recalcitrance to conventional therapy, a new class of antifungal drugs must be explored. 10b, a 2-aminotetralin derivate, was synthesized as a novel chemical structural antifungal agent and exibited strong anti-biofilm activity. To further investigate the action mechanism, we used microarray analysis to investigate the genes expression profiles of C. albicans biofilms treated or untreated with 10b and found 150 genes were differentially expressed. Of them, 69 showed a decrease in expression and 81 showed an increase in expression -10 differentially expressed genes related to biofilm formation, Filamentous or hypha growth. A gene related to specifically hydrolyzing β-1, 3 glucan was significantly increased. 10 down-regulated genes were involved in glycolysis, fermentation and active oxygen scavenging. 15 overexpressed genes were related to the lipid metabolic process. Of them, 13 genes were directly linked to ergosterol biosynthesis including ERG2, ERG6 and ERG11. 10 genes related to translation were over-expressed. Among them, 2 genes involved in negative regulation of transcription were significantly up-regulated. Total RNA from the control SC5314 biofilms and 10b-treated SC5314 biofilms were used to generate target cDNA, and then hybridized to 8k Candida albicans Genome Array Genechips, representing about 7925 characterized Candida albicans genes. Two independent experiments were conducted. Reference strain was control SC5314 biofilms and test strain was SC5314 biofilms treated with 10b.
Project description:Azole resistance and varying degrees of cross-resistance to other members of the azole family in clinical isolates have been documented, which has necessitated additional and prolonged use of the antifungal agents available. 2-Amino-Nonyl-6-Methoxyl-Tetralin Muriate (10b), a novel chemical structural aminotetralin derivate, is synthesized as an antifungal agent and exibited strong antifungal activity. To further investigated the action mechanism, we used microarray analysis to investigate the genes expression profiles of C. albicans cells treated or untreated with 10b and found 957 genes were differentially expressed. Of them,457 showed a decrease in expression and 500 showed an increase in expression. 33 down-regulated genes were involved in glycolysis (e.g., PFK1, CDC19 and HXK2), fermentation (e.g., PDC11, ALD5 and ADH1) and respiratory electron transport chain (e.g., CBP3, COR1 and QCR8). 30 differentially expressed genes were found to relate to biofilm formation, filamentous or hyphal growth. It was noticed that striking up-regulation of SFL1 and marked down-regulation of YWP1 directly related to prevent C. albicans from changing its morphology from the yeast form to the hyphal. Two genes related to specifically hydrolyzing beta-1, 3 glucan (e.g., XOG1) and chitin (e.g., CHT1) were significantly increased. 40 overexpressed genes and 15 down-regulated genes were related to the lipid metabolic process. Of them, Eight were directly linked to ergosterol biosynthesis, including ERG2, ERG6 and ERG11. 99 genes related to translation were down-regulated following exposure to 10b, which account for 21.66% in down-regulated genes. This suggested that translation might be lower in SC5314 cells exposed to 10b than in control. Total RNA from the control SC5314 cells and 10b-treated SC5314 cells were used to generate target cDNA, and then hybridized to 8k Candida albicans Genome Array Genechips, representing about 7925 characterized Candida albicans genes. Two independent experiments were conducted. Reference strain was control SC5314 cells and test strain was SC5314 cells treated with 10b.
Project description:Transcriptional profiling of Candida albicans SC5314 comparing C. albicans grown in RPMI1640 or in RPMI1640 with 100ug/ml AAT. Goal was to determine the effects of AAT on global C. albicans gene expression.
Project description:Candida spp. are commensal opportunistic fungal pathogens that often colonize and infect mucosal surfaces of the human body. Candida, along with other microbes in the microbiota, generally grow as biofilms in a polymicrobial environment. Due to the nature of cellular growth in a biofilm (such as production of a protective extracellular matrix) and the recalcitrance of biofilms, infections involving biofilms are very difficult to treat with antibiotics and perpetuate the cycle of infection. The two most commonly isolated Candida spp. from Candida infections are Candida albicans and Candida glabrata, and the presence of both of these species results in increased patient inflammation and overall biofilm formation. This work aims to investigate the interspecies interactions between C. albicans (Ca) and C. glabrata (Cg) in co-culture through transcriptome analysis over the course of biofilm growth. We report that during co-culture, lipid biosynthesis and transporter genes were significantly modulated in both Ca and Cg. Differentially expressed genes in Ca during co-culture growth included putative transporter genes (C2_02180W_A and C1_09210C_B; up-regulated), amino acid biosynthesis (ARO7; up-regulated most in Ca:Cg 1:3), and lipid-related genes (LIP3 and IPT1; down-regulated). Differentially expressed genes in Cg in co-culture included putative transmembrane transporters (CAGL0H03399g and CAGL0K04609g; up-regulated), an oxidative stress response gene (CAGL0E04114g; down-regulated most in Ca:Cg 1:3), genes involved in the TCA cycle (LYS12 and CAGL0J06402g; down-regulated), and several genes involved in cell wall/membrane biosynthesis (SEC53, GAS2, VIG9; down-regulated). Additionally, confocal microscopy was utilized for membrane lipid analysis between monoculture and co-culture biofilms. Through filipin-stained lipid analysis, we found that there was a significant increase in cell membrane lipid content in Ca:Cg 1:3 biofilms compared to Ca and Ca:Cg 3:1 biofilms. These results suggest substantial modifications of both cell wall, cell membrane, and transporters in both Ca and Cg during the time course of co-culture growth, which allows for increased biofilm formation and virulence in Candida co-culture biofilms.
Project description:Homo sapiens fresh whole blood was infected with Candida albicans SC5314. RNA-pool of both species extracted at 0min (control), 15, 30, 60, 120, 240 min. Samples are rRNA depleted. Expression measurement of Homo sapiens genes.