Project description:In a prior report, we observed two distinct lung microbiomes in healthy subjects that we termed â??pneumotypesâ??: pneumotypeSPT, characterized by high bacterial load and supraglottic predominant taxa (SPT) such as the anaerobes Prevotella and Veillonella; and pneumotypeBPT, with low bacterial burden and background predominant taxa (BPT) found in the saline lavage and bronchoscope. Here, we determined the prevalence of these two contrasting lung microbiome types, in a multi-center study of healthy subjects. We confirmed that a lower airway microbiome enriched with upper airway microbes (pneumotypeSPT) was present in ~45% of healthy individuals. Cross-sectional Multicenter cohort. BAL of 49 healthy subjects from three cohort had their lower airway microbiome assessed by 16S rDNA sequencing and microbial gene content (metagenome) was computationally inferred from taxonomic assignments. The amplicons from total 100 samples are barcoded; the barcode and other clinical characteristics (e.g. inflammatory biomarkers and metabolome data) for each sample are provided in the 'Pneumotype.sep.Map.A1.txt' file.
Project description:Many diseases have been associated with gut microbiome abnormalities. The root cause of such diseases is not only due to bacterial dysbiosis, but also to change in bacterial functions, which are best studied by proteomic approaches. Although bacterial proteomics is well established, metaproteomics is hindered by challenges associated with the sample physical structure, contaminating proteins, the simultaneous analysis of hundreds of species and the subsequent data analysis. Here, we present a systematic assessment of sample preparation and data analysis methodologies applied to LC-MS/MS metaproteomics experiment. We could show that low speed centrifugation (LSC) has a significant impact on both peptide identifications and reproducibility. LSC led to increase in peptide and proteins identifications compare to no LSC. Notably, the dominant bacterial phyla, i.e. Firmicutes and Bacteroidetes, showed divergent representation between LSC and no-LSC. In terms of data processing, protein sequence databases derived from mouse faeces metagenome provided at least four times more MS/MS identification compared to databases of concatenated single organisms. We also demonstrated that two-steps database search strategy comes at the expense of a dramatic rise in number of false positives compared to single-step strategy. Overall, we found a positive correlation between matching metaproteome and metagenome abundance, which could be linked to core microbial functions, such as glycolysis-gluconeogenesis, citrate cycle and carbon metabolism. We observed significant overlap and correlation at the phylum, class, order and family taxonomic levels between taxonomy-derived from metagenome and metaproteome. Notably, nearly all functional categories (e.g., membrane transport, translation, transcription) were differentially abundant in the metaproteome (activity) compared to what would be expected from the metagenome (potential). In conclusion, these results highlight the need to perform metaproteomics when studying complex microbiome samples.
Project description:A Metaproteomic Workflow for Sample Preparation and Data Analysis Applied to Mouse Faeces: 1 MTD project_description Many diseases have been associated with gut microbiome abnormalities. The root cause of such diseases is not only due to bacterial dysbiosis, but also to change in bacterial functions, which are best studied by proteomic approaches. Although bacterial proteomics is well established, metaproteomics is hindered by challenges associated with the sample physical structure, contaminating proteins, the simultaneous analysis of hundreds of species and the subsequent data analysis. Here, we present a systematic assessment of sample preparation and data analysis methodologies applied to LC-MS/MS metaproteomics experiment. We could show that low speed centrifugation (LSC) has a significant impact on both peptide identifications and reproducibility. LSC led to increase in peptide and proteins identifications compare to no LSC. Notably, the dominant bacterial phyla, i.e. Firmicutes and Bacteroidetes, showed divergent representation between LSC and no-LSC. In terms of data processing, protein sequence databases derived from mouse faeces metagenome provided at least four times more MS/MS identification compared to databases of concatenated single organisms. We also demonstrated that two-steps database search strategy comes at the expense of a dramatic rise in number of false positives compared to single-step strategy. Overall, we found a positive correlation between matching metaproteome and metagenome abundance, which could be linked to core microbial functions, such as glycolysis-gluconeogenesis, citrate cycle and carbon metabolism. We observed significant overlap and correlation at the phylum, class, order and family taxonomic levels between taxonomy-derived from metagenome and metaproteome. Notably, nearly all functional categories (e.g., membrane transport, translation, transcription) were differentially abundant in the metaproteome (activity) compared to what would be expected from the metagenome (potential). In conclusion, these results highlight the need to perform metaproteomics when studying complex microbiome samples.
Project description:Many diseases have been associated with gut microbiome abnormalities. The root cause of such diseases is not only due to bacterial dysbiosis, but also to change in bacterial functions, which are best studied by proteomic approaches. Although bacterial proteomics is well established, metaproteomics is hindered by challenges associated with the sample physical structure, contaminating proteins, the simultaneous analysis of hundreds of species and the subsequent data analysis. Here, we present a systematic assessment of sample preparation and data analysis methodologies applied to LC-MS/MS metaproteomics experiment. We could show that low speed centrifugation (LSC) has a significant impact on both peptide identifications and reproducibility. LSC led to increase in peptide and proteins identifications compare to no LSC. Notably, the dominant bacterial phyla, i.e. Firmicutes and Bacteroidetes, showed divergent representation between LSC and no-LSC. In terms of data processing, protein sequence databases derived from mouse faeces metagenome provided at least four times more MS/MS identification compared to databases of concatenated single organisms. We also demonstrated that two-steps database search strategy comes at the expense of a dramatic rise in number of false positives compared to single-step strategy. Overall, we found a positive correlation between matching metaproteome and metagenome abundance, which could be linked to core microbial functions, such as glycolysis-gluconeogenesis, citrate cycle and carbon metabolism. We observed significant overlap and correlation at the phylum, class, order and family taxonomic levels between taxonomy-derived from metagenome and metaproteome. Notably, nearly all functional categories (e.g., membrane transport, translation, transcription) were differentially abundant in the metaproteome (activity) compared to what would be expected from the metagenome (potential). In conclusion, these results highlight the need to perform metaproteomics when studying complex microbiome samples.
Project description:Many diseases have been associated with gut microbiome abnormalities. The root cause of such diseases is not only due to bacterial dysbiosis, but also to change in bacterial functions, which are best studied by proteomic approaches. Although bacterial proteomics is well established, metaproteomics is hindered by challenges associated with the sample physical structure, contaminating proteins, the simultaneous analysis of hundreds of species and the subsequent data analysis. Here, we present a systematic assessment of sample preparation and data analysis methodologies applied to LC-MS/MS metaproteomics experiment. We could show that low speed centrifugation (LSC) has a significant impact on both peptide identifications and reproducibility. LSC led to increase in peptide and proteins identifications compare to no LSC. Notably, the dominant bacterial phyla, i.e. Firmicutes and Bacteroidetes, showed divergent representation between LSC and no-LSC. In terms of data processing, protein sequence databases derived from mouse faeces metagenome provided at least four times more MS/MS identification compared to databases of concatenated single organisms. We also demonstrated that two-steps database search strategy comes at the expense of a dramatic rise in number of false positives compared to single-step strategy. Overall, we found a positive correlation between matching metaproteome and metagenome abundance, which could be linked to core microbial functions, such as glycolysis-gluconeogenesis, citrate cycle and carbon metabolism. We observed significant overlap and correlation at the phylum, class, order and family taxonomic levels between taxonomy-derived from metagenome and metaproteome. Notably, nearly all functional categories (e.g., membrane transport, translation, transcription) were differentially abundant in the metaproteome (activity) compared to what would be expected from the metagenome (potential). In conclusion, these results highlight the need to perform metaproteomics when studying complex microbiome samples.
Project description:Background: The soil environment is responsible for sustaining most terrestrial plant life on earth, yet we know surprisingly little about the important functions carried out by diverse microbial communities in soil. Soil microbes that inhabit the channels of decaying root systems, the detritusphere, are likely to be essential for plant growth and health, as these channels are the preferred locations of new root growth. Understanding the microbial metagenome of the detritusphere and how it responds to agricultural management such as crop rotations and soil tillage will be vital for improving global food production. Methods: The rhizosphere soils of wheat and chickpea growing under + and - decaying root were collected for metagenomics sequencing. A gene catalogue was established by de novo assembling metagenomic sequencing. Genes abundance was compared between bulk soil and rhizosphere soils under different treatments. Conclusions: The study describes the diversity and functional capacity of a high-quality soil microbial metagenome. The results demonstrate the contribution of the microbiome from decaying root in determining the metagenome of developing root systems, which is fundamental to plant growth, since roots preferentially inhabit previous root channels. Modifications in root microbial function through soil management, can ultimately govern plant health, productivity and food security.
Project description:Development of cereal crops with high nitrogen-use efficiency (NUE) is a priority for worldwide agriculture. In addition to conventional plant breeding and genetic engineering, the use of the plant microbiome offers another approach to improve crop NUE. To gain insight into the bacterial communities associated with sorghum lines that differ in NUE, a field experiment was designed comparing 24 diverse sorghum lines under sufficient and deficient nitrogen (N). Amplicon sequencing and untargeted gas chromatography-mass spectrometry (GC-MS) were used to characterize the bacterial communities and the root metabolome associated with sorghum genotypes varying in sensitivity to low N. We demonstrated that N stress and sorghum type (energy, sweet, and grain sorghum) significantly impacted the root-associated bacterial communities and root metabolite composition of sorghum. We found a positive correlation between sorghum NUE and bacterial richness and diversity in the rhizosphere. The greater alpha diversity in high NUE lines was associated with the decreased abundance of a dominant bacterial taxa, Pseudomonas. Multiple strong correlations were detected between root metabolites and rhizosphere bacterial communities in response to low-N stress. This indicates that the shift in the sorghum microbiome due to low-N is associated with the root metabolites of the host plant. Taken together, our findings suggest that host genetic regulation of root metabolites plays a role in defining the root-associated microbiome of sorghum genotypes differing in NUE and tolerance to low-N stress.
Project description:The intestinal microbiota plays a key role in shaping host homeostasis by regulating metabolism, immune responses and behaviour. Its dysregulation has been associated with metabolic, immune and neuropsychiatric disorders and is accompanied by changes in bacterial metabolic regulation. Although proteomic is well suited for analysis of individual microbes, metaproteomic of faecal samples is challenging due to the physical structure of the sample, presence of contaminating host proteins and coexistence of hundreds of species. Furthermore, there is a lack of consensus regarding preparation of faecal samples, as well as downstream bioinformatic analyses following metaproteomic data acquisition. Here we assess sample preparation and data analysis strategies applied to mouse faeces in a typical LC-MS/MS metaproteomic experiment. We show that low speed centrifugation (LSC) of faecal samples leads to high protein identification rates but possibly enriched for a subset of taxa. During database search, two-step search strategies led to dramatic and underestimated accumulation of false positive protein identifications. Regarding taxonomic annotation, the MS-identified peptides of unknown origin were annotated with highest sensitivity and specificity using the Unipept software. Comparison of matching metaproteome and metagenome data revealed a positive correlation between protein and gene abundances. Notably, nearly all functional categories of detected protein groups were differentially abundant in the metaproteome compared to what would be expected from the metagenome, highlighting the need to perform metaproteomic when studying complex microbiome samples.
Project description:Plants are naturally associated with diverse microbial communities, which play significant roles in plant performance, such as growth promotion or fending off pathogens. The roots of Alkanna tinctoria L. are rich in naphthoquinones, particularly the medicinally used chiral compounds alkannin, shikonin and their derivatives. Former studies already have shown that microorganisms may modulate plant metabolism. To further investigate the potential interaction between A. tinctoria and associated microorganisms we performed a greenhouse experiment, in which A. tinctoria plants were grown in the presence of three distinct soil microbiomes. At four defined plant developmental stages we made an in-depth assessment of bacterial and fungal root-associated microbiomes as well as all primary and secondary metabolites. Our results showed that the plant developmental stage was the most important driver influencing the plant metabolite content, revealing peak contents of alkannin/shikonin at the fruiting stage. In contrast, the soil microbiome had the biggest impact on the plant root microbiome. Correlation analyses performed on the measured metabolite content and the abundance of individual bacterial and fungal taxa suggested a dynamic, at times positive or negative relationship between root-associated microorganisms and root metabolism. In particular, the bacterial Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium group and the fungal species Penicillium jensenii were found to be positively correlated with higher content of alkannins.