Project description:The low fecundity, late maturity, long gestation and long life span of Nautilus suggest that this species is vulnerable to over-exploitation. Demand from the ornamental shell trade has contributed to their rapid decline in localized populations. More data from wild populations are needed to design management plans which ensure Nautilus persistence. We used a variety of techniques including capture-mark-recapture, baited remote underwater video systems, ultrasonic telemetry and remotely operated vehicles to estimate population size, growth rates, distribution and demographic characteristics of an unexploited Nautilus pompilius population at Osprey Reef (Coral Sea, Australia). We estimated a small and dispersed population of between 844 and 4467 individuals (14.6-77.4 km(-2)) dominated by males (83:17 male:female) and comprised of few juveniles (<10%).These results provide the first Nautilid population and density estimates which are essential elements for long-term management of populations via sustainable catch models. Results from baited remote underwater video systems provide confidence for their more widespread use to assess efficiently the size and density of exploited and unexploited Nautilus populations worldwide.
Project description:To determine if the Drosophila MyoD homolog, nautilus, was activating any miRNA loci, similar to vertebrate MyoD, we compared the miRNA expression profiles between wild-type (w1118) and nautilus null embryos during the window of maximum nautilus expression (6-8hr AEL), using LNA arrays specifically designed to quantify miRNA levels in Drosophila (Exiqon). Expression levels for mir-309, mir-3, mir-286, mir-4, mir-5, and mir-6 from the 8-miR cluster, were significantly decreased in nautilus null embryos. It suggests that the intergenic 8-miR cluster, encoding eight miRNAs, is regulated by nautilus.
Project description:The cephalopod genus Nautilus is considered a "living fossil" with a contested number of extant and extinct species, and a benthic lifestyle that limits movement of animals between isolated seamounts and landmasses in the Indo-Pacific. Nautiluses are fished for their shells, most heavily in the Philippines, and these fisheries have little monitoring or regulation. Here, we evaluate the hypothesis that multiple species of Nautilus (e.g., N. belauensis, N. repertus and N. stenomphalus) are in fact one species with a diverse phenotypic and geologic range. Using mitochondrial markers, we show that nautiluses from the Philippines, eastern Australia (Great Barrier Reef), Vanuatu, American Samoa, and Fiji fall into distinct geographical clades. For phylogenetic analysis of species complexes across the range of nautilus, we included sequences of Nautilus pompilius and other Nautilus species from GenBank from localities sampled in this study and others. We found that specimens from Western Australia cluster with samples from the Philippines, suggesting that interbreeding may be occurring between those locations, or that there is limited genetic drift due to large effective population sizes. Intriguingly, our data also show that nautilus identified in other studies as N. belauensis, N. stenomphalus, or N. repertus are likely N. pompilius displaying a diversity of morphological characters, suggesting that there is significant phenotypic plasticity within N. pompilius.