Project description:To investigate the direct effects of endogenous glucocorticoids on global gene expression of cardiomyocytes and to explore their potential impact on their proliferation and regenerative capacity, we performed whole-transcriptome RNA sequencing on primary neonatal murine cardiomyocytes cultured in vitro and treated with corticosterone. Corticosterone was administered over a short time frame to identify genes directly regulated by glucocorticoids.
Project description:To investigate the role of the glucocorticoid receptor (GR) in the regulation of cardiomyocyte maturation and proliferation, we established a cardiomyocyte-specific GR knock-out (GR-cKO) mouse model by Cre-Lox technology. We thus performed gene expression profiling analysis using data obtained from RNA-seq of cardiomyocytes isolated from GR-cKO and control mouse models at neonatal stage and cultured in vitro. Our analyses unveiled a role for GR in regulating gene networks related to the energetic metabolism, which in turn may impact on cardiomyocyte proliferative and regenerative ability.
Project description:We examined Glucocorticoid receptor binding sites in isolated neonatal cardiomyocytes treated with Dexamethasone (100nM) for 1hr or Ethanol using GR-ChIP-Seq.
Project description:We examined Glucocorticoid receptor binding sites in isolated neonatal cardiomyocytes treated with Dexamethasone (100nM) for 1hr or Ethanol using GR-ChIP-Seq. In addition to determine the change in the resulting transcriptional status of genes we performed RNAseq in cardiomyocytes treated with Dexamethasone (100nM) or Ethanol for 1hr or 24hrs.
Project description:Expression profiles of microRNAs in neonatal (isolated from day0 newborn rats) and adult rat cardiomyocytes (isolated from 2month old rats) Two condition experiment; Biological replicates: 7 samples of cardiomyocytes from neonatal rats (from independent isolations); 6 samples of cardiomyocytes isolated from adult animals (from independent isolations)
Project description:We addressed the question of which protein kinases are expressed in cardiomyocytes. We assessed the changes during postnatal development, comparing profiles in rat neonatal ventricular cardiomyocytes (NVMs) with adult ventricular cardiomyocytes (AVMs). Neonatal and adult rat ventricular cardiomyocytes prepared according to established procedures (Marshall et al. PLoS ONE 2010 5(4):e10027; Fuller and Sugden, FEBs Lett. 1989 247:209-12; Rodrigues and Severson In Biochemical Techniques in the Heart (McNeill, J. H., Ed.) pp 101-115, CRC Press, New York.). mRNA expression profiles compared using Affymetrix rat genome 230 2.0 arrays.
Project description:Genome-wide gene expression analysis at different stages of cardiomyocyte differentiation (undifferentiated mouse embryonic stem cells, neonatal mouse cardiomyocytes and adult mouse cardiomyocytes). Results provide important information on the differential expressed genes between undifferentiated mouse embrionic stem cells (mES) and mouse cardiomyocytes (CM) and also between cardiomyocytes from neonatal (CMp) and adult stages (CMa). This dataset allowed us to compare the expression profile of mES, CMp and CMa with the epigenetic profile of histone methylation generated with ChIP-seq experiments. Total RNA was obtained from biological triplicate of undifferentiated mouse embryonic stem cells (mES), neonatal mouse cardiomyocytes (CMp) and adult mouse cardiomyocytes (CMa)
Project description:Study on changes in gene expression in primary cultures of neonatal rat ventricular cardiomyocytes to electric stimulation. Through comparing non-stimulated, stimulated and blebbistatin supplemented and stimulated cultures we set out to identify the genes that are specifically activated by electric pulsing separate from cardiomyocyte contractions. After initial recovery phase, primary cultures of neonatal rat ventricular cardiomyocytes were cultured for 3 days without pulsing, with electric pulsing or with electric pulsing combined with blebbistatin. Per treatment: 3 arrays, with samples obtained from 3 separate series of cardiomyocyte isolation and culturing. Per array: sample prepared from pooled (1:1) RNA from duplicate experiments.