Project description:The Pseudomonas aeruginosa quorum-sensing (QS) systems contribute to bacterial homeostasis and pathogenicity. Although many regulators have been characterized to control the production of virulence factors and QS signaling molecules, its detailed regulatory mechanisms still remain elusive. Here, we performed chromatin immunoprecipitation followed by high-throughput DNA sequencing (ChIP-seq) on 10 key QS regulators. The direct regulation of these genes by corresponding regulator has been confirmed by Electrophoretic mobility shift assays (EMSAs) and quantitative real-time polymerase chain reactions (qRT-PCR). Binding motifs are found by using MEME suite and verified by footprint assays in vitro. Collectively, this work provides new cues to better understand the detailed regulatory networks of QS systems. ChIP-seq of 10 QS regulators in Pseudomonas aeruginosa
Project description:Regulatory networks including virulence-related transcriptional factors (TFs) determine bacterial pathogenicity in response to different environmental cues. Pseudomonas aeruginosa, a Gram-negative opportunistic pathogen of humans, recruits numerous TFs in quorum sensing (QS) system, type III secretion system (T3SS) and Type VI secretion system (T6SS) to mediate the pathogenicity. Although many virulence-related TFs have been illustrated individually, very little is known about their crosstalks and regulatory network. Here, based on chromatin immunoprecipitation coupled with high-throughput sequencing (ChIP-seq) and transcriptome profiling (RNA-seq), we primarily focused on understanding the crosstalks of 20 virulence-related TFs, which led to construction of a virulence regulatory network named PAGnet (Pseudomonas aeruginosa Genomic integrated regulatory network), including 82 crosstalk targets. The PAGnet uncovered the intricate mechanism of virulence regulation and revealed master regulators in QS, T3SS and T6SS pathways. In particular, GacA and ExsA showed novel functions in QS and nitrogen metabolism. In addition, an online PAGnet platform was provided to analyze these TFs and more virulence factors. Taken together, the present study revealed the function-specific crosstalks of virulence regulatory network, which might provide new strategies for treating infections in P. aeruginosa in the future.
Project description:Analysis of Pseudomonas aeruginosa PAO1 treated with 200 µM sphingomyelin. Results provide insight into the response to sphingomyelin in P. aeruginosa.
Project description:The Pseudomonas aeruginosa quorum-sensing (QS) systems contribute to bacterial homeostasis and pathogenicity. Although the AraC family transcription factor VqsM has been characterized to control the production of virulence factors and QS signaling molecules, its detailed regulatory mechanisms still remain elusive. Here, we report that VqsM directly binds to the lasI promoter region, and thus regulates its expression. To identify additional targets of VqsM in P. aeruginosa PAO1, we performed chromatin immunoprecipitation followed by high-throughput DNA sequencing (ChIP-seq) which detected 48 enriched loci harboring VqsM-binding peaks in P. aeruginosa genome. The direct regulation of these genes by VqsM has been confirmed by Electrophoretic mobility shift assays (EMSAs) and quantitative real-time polymerase chain reactions (qRT-PCR). A VqsM-binding motif is found by using MEME suite and verified by footprint assays in vitro. In addition, VqsM directly binds to the promoter regions of antibiotic resistance regulator NfxB and the master type III system regulator ExsA. Notably, the vqsM mutant displayed more resistance to two types of antibiotics and promoted bacterial survival in a mouse model, compared to the wild type PAO1 strain. Collectively, this work provides new cues to better understand the detailed regulatory networks of QS systems, T3SS, and antibiotic resistance. Pseudomonas aeruginosa MAPO1 containing empty pAK1900 or pAK1900-VqsM-VSV
Project description:In the present study, we employed Affymetrix Pseudomonas aeruginosa GeneChip arrays to investigate global gene expression profiles during the cellular response of Pseudomonas aeruginosa to sodium hypochlorite Keywords: Antimicrobial response
Project description:In the present study, we employed Affymetrix Pseudomonas aeruginosa GeneChip arrays to investigate the dynamics of global gene expression profiles during the cellular response of Pseudomonas aeruginosa to ortho-phenylphenol, which involved initial growth inhibition and metabolism. Keywords: Time course