Project description:we determine genome-wide binding profiles of a maize CCA1 homolog, ZmCCA1b, in maize inbreds and F1 hybrids at different times of the day. ZmCCA1b is characterized as a central clock regulator gene with evolutionarily conserved molecular and circadian functions and nonadditively expressed in F1 hybrid seedlings. ZmCCA1b binds to over 4,300 target genes in the maize genomes, of which annotation confirms energy metabolic pathways as the main output. We report that an altered temporal binding activity of ZmCCA1b in the hybrid seedlings, which increases expression of carbon fixation genes, increases carbon fixation rates and biomass, demonstrating a novel example of how circadian-regulatory networks directly contribute to growth vigor in maize hybrids. These results collectively offer new insights into clock-mediated regulation of growth vigor in hybrid plants and crops. Profiling genome-wide binding events of ZmCCA1b in the maize inbreds and F1 hybrids at ZT3, ZT9 and ZT15 using chromatin immunoprecipitation followed by deep sequencing (ChIP-seq). 2 biological replicates for each sample were used. Input DNA sample corresponding to each ChIP sample was also sequenced in parallel. We have developed a native antibody for the protein (GRMZM2G014902; epitope: residues 11-77) for the ChIP-seq study.
Project description:we determine genome-wide binding profiles of a maize CCA1 homolog, ZmCCA1b, in maize inbreds and F1 hybrids at different times of the day. ZmCCA1b is characterized as a central clock regulator gene with evolutionarily conserved molecular and circadian functions and nonadditively expressed in F1 hybrid seedlings. ZmCCA1b binds to over 4,300 target genes in the maize genomes, of which annotation confirms energy metabolic pathways as the main output. We report that an altered temporal binding activity of ZmCCA1b in the hybrid seedlings, which increases expression of carbon fixation genes, increases carbon fixation rates and biomass, demonstrating a novel example of how circadian-regulatory networks directly contribute to growth vigor in maize hybrids. These results collectively offer new insights into clock-mediated regulation of growth vigor in hybrid plants and crops.
Project description:F1 hybrids can outperform their parents in yield and vegetative biomass, features of hybrid vigor which form the basis of the hybrid seed industry. The yield advantage of the F1 is lost in the F2 and subsequent generations. In Arabidopsis, from F2 plants which have a F1 –like phenotype, we have by recurrent selection produced pure breeding F5/F6 lines “Hybrid Mimics”, in which the characteristics of the F1 Hybrid are stabilized. These Hybrid Mimic lines, like the F1 Hybrid, have larger leaves than the parent plant, the leaves having increased photosynthetic cell numbers, and in some lines increased size of cells, suggesting an increased supply of photosynthate. A comparison of the differentially expressed genes in the F1 Hybrid with those of eight Hybrid Mimic lines has identified metabolic pathways altered in both; these pathways include down regulation of defense response pathways and altered abiotic response pathways. F6 Hybrid Mimic lines are mostly homozygous at each locus in the genome yet retain the large F1-like phenotype. Many alleles in the F6 plants, when they are homozygous, have expression levels different to the level in the parent. We consider this altered expression to be a consequence of trans-regulation of genes from one parent by genes from the other parent. Transregulation could also arise from epigenetic modifications in the F1. The pure breeding Hybrid Mimics have been valuable in probing the mechanisms of hybrid vigor and may also prove to be useful hybrid vigor equivalents in agriculture.
Project description:F1 hybrids can outperform their parents in yield and vegetative biomass, features of hybrid vigor which form the basis of the hybrid seed industry. The yield advantage of the F1 is lost in the F2 and subsequent generations. In Arabidopsis, from F2 plants which have a F1 –like phenotype, we have by recurrent selection produced pure breeding F5/F6 lines “Hybrid Mimics”, in which the characteristics of the F1 Hybrid are stabilized. These Hybrid Mimic lines, like the F1 Hybrid, have larger leaves than the parent plant, the leaves having increased photosynthetic cell numbers, and in some lines increased size of cells, suggesting an increased supply of photosynthate. A comparison of the differentially expressed genes in the F1 Hybrid with those of eight Hybrid Mimic lines has identified metabolic pathways altered in both; these pathways include down regulation of defense response pathways and altered abiotic response pathways. F6 Hybrid Mimic lines are mostly homozygous at each locus in the genome yet retain the large F1-like phenotype. Many alleles in the F6 plants, when they are homozygous, have expression levels different to the level in the parent. We consider this altered expression to be a consequence of trans-regulation of genes from one parent by genes from the other parent. Transregulation could also arise from epigenetic modifications in the F1. The pure breeding Hybrid Mimics have been valuable in probing the mechanisms of hybrid vigor and may also prove to be useful hybrid vigor equivalents in agriculture.
Project description:affy_genomic_poplar - affy_genomic_poplar - The project aims to identify genes of interest for water deficit acclimation in poplar. We look for genes and gene expression networks related to drought stress in two hybrid cultivars, differing in their drought tolerance in field. Affymetrix poplar genome array was designed on several Populus species. In order to deal with comparative approaches, we checked the convenience of the array by hybridizing genomic DNA of the two hybrid cultivars (Populus deltoides × Populus nigra, namely ‘cv Carpaccio’ and ‘cv Soligo’). This point is important as transcript sequence might have diverged in the two genomes (Fossati et al, 2005), which could lead to absence of hybridization without physiological meaning. -Two poplar cultivars, Soligo (S) and Carpacio (C) were grown in controlled conditions. Mature leaves were collected and genomic DNA was extracted from leaves in CTAB buffer. gDNA was fragmented with DNAse1. DNA fragments were labelled with Biotin N6-ddATP and hybridized on Affymetrix poplar genome array. Two technical replicates per genotype were performed. Keywords: genomic comparison,gain of fuction epimutation
Project description:Through genome-wide comparative transcriptome analysis, we strongly predict that overdominance at gene expression level plays a pivotal role in early biomass vigor of hybrids. The combinational contribution of circadian rhythm and other metabolic processes may be controlled vigorous growth in hybrids. Our result provides an important foundation for dissecting molecular mechanisms of biomass vigor in hybrid cotton