Project description:Rice reproductive development is highly sensitive to high temperature stress. In rice flowering occurs over a period of at least 5 days. Heat stress alters the global gene expression dynamics in panicle especially during pollen development, anthesis and grain filling. Some of the rice genotypes like Nagina 22 show better spikelet fertility and grain filling compared to high yielding and popular rice cultivars like IR 64. We carried out microarray analysis of 8 days heat stressed panicles of Nagina22, heat and drought tolerant aus rice cultivar and IR64, a heat susceptible indica genotype along with unstressed samples of Nagina22 and IR64 so as to understand the transcriptome dynamics in these two genotypes under heat stress and to identify the genes important for governing heat stress tolerance in rice.
Project description:<p>Pigmented rice (<em>Oryza sativa L.</em>) is a rich source of nutrients, but pigmented lines typically have long life cycles and limited productivity. Here we generated genome assemblies of 5 pigmented rice varieties and evaluated the genetic variation among 51 pigmented rice varieties by resequencing an additional 46 varieties. Phylogenetic analyses divided the pigmented varieties into four varietal groups: Geng-japonica, Xian-indica, circum-Aus and circum-Basmati. Metabolomics and ionomics profiling revealed that black rice varieties are rich in aromatic secondary metabolites. We established a regeneration and transformation system and used CRISPR-Cas9 to knock out three flowering time repressors (Hd2, Hd4 and Hd5) in the black Indonesian rice Cempo Ireng, resulting in an early maturing variety with shorter stature. Our study thus provides a multi-omics resource for understanding and improving Asian pigmented rice.</p>
Project description:Abstract We have re-analysed publicly available mass spectrometry (MS) data sets enriched for phosphopeptides from Asian rice (Oryza sativa). In total we have identified, 15522 phosphosites on Serine, Threonine and Tyrosine residues on rice proteins. The data has been loaded into UniProtKB, enabling researchers to visualise the sites alongside other stored data on rice proteins, including structural models from AlphaFold2, and into PeptideAtlas, enabling visualisation of the source evidence for each site, including scores and source mass spectra. We identified sequence motifs for phosphosites, and link motifs to enrichment of different biological processes, indicating different downstream regulation caused by different kinase groups. We cross-referenced phosphosites against single amino acid variation (SAAV) data sourced from the rice 3000 genomes data, to identify SAAVs within or proximal to phosphosites that could cause loss of a particular site in a given rice variety. The data was further clustered to identify groups of sites with similar patterns across rice family groups, allowing us to identify sites highly conserved in Japonica, but mostly absent in, for example, Aus type rice varieties - known to have different responses to drought. These resources can assist rice researchers to discover alleles with significantly different functional effects across rice varieties.
Project description:We performed a targeted NGS using the commercial gene panel design ClearSeq Inherited Disease (Agilent Technologies) to identify the pathogenic sequence variants in two boys with neurodevelopmental disorders and epilepsy and their unaffected parents
Project description:We performed a targeted NGS using the commercial gene panel design ClearSeq Inherited Disease (Agilent Technologies) to identify the pathogenic sequence variants in children with ID/DD, ASD and MCA and their unaffected parents