Project description:We performed a targeted NGS using the commercial gene panel design ClearSeq Inherited Disease (Agilent Technologies) to identify the pathogenic sequence variants in two boys with neurodevelopmental disorders and epilepsy and their unaffected parents
Project description:We performed a targeted NGS using the commercial gene panel design ClearSeq Inherited Disease (Agilent Technologies) to identify the pathogenic sequence variants in children with ID/DD, ASD and MCA and their unaffected parents
Project description:We performed a targeted NGS using the commercial gene panel design ClearSeq Inherited Disease (Agilent Technologies) to identify the pathogenic sequence variants in a girl presenting an apparent microcephaly with mild dysmorphic facial features, delayed psychomotoric development and central hypotonia.
Project description:Analysis of gene mutations and copy number variation status by an in-house next-generation sequencing (NGS) panel. The panel includes 571 genes of interest in oncology for diagnosis, prognosis, and theranostics including chordomas genes of interest.
Project description:Classical-like Ehlers–Danlos syndrome (clEDS) is an autosomal recessive disorder caused by complete absence of tenascin-X resulting from biallelic variation in TNXB. Accurate detection of TNXB variants is challenging because of the presence of the pseudogene TNXA, which can undergo non-allelic homologous recombination. Therefore, we designed a genetic screening system that is performed using similar operations to other next-generation sequencing (NGS) panel analyses and can be applied to accurately detect TNXB variants and the recombination of TNXA-derived sequences into TNXB. We also analyzed the levels of serum form of TNX (sTNX) by Western bot and LC/MS/MS. Using this system, we identified biallelic TNXB variants in nine unrelated clEDS patients. This report is the first to apply an NGS-based screening for TNXB variants and represents the third largest cohort of clEDS.
Project description:Most proteogenomic approaches for mapping single amino acid polymorphisms (SAPs) require construction of a sample-specific database containing protein variants predicted from the next-generation sequencing (NGS) data. We present a new strategy for direct SAP detection without relying on NGS data. Among the 348 putative SAP peptides identified in an industrial yeast strain, 85.6% of SAP sites were validated by genomic sequencing.