Project description:CHIR-090 is an inhibitor of lipid A biosytnesis. CHIR-090 treatment on E. coli sinificantly increased the expression of fatty acid biosythesis gene fabA and fabB. Keywords: Inhibition response
Project description:CHIR-090 is an inhibitor of lipid A biosytnesis. CHIR-090 treatment on E. coli sinificantly increased the expression of fatty acid biosythesis gene fabA and fabB. Experiment Overall Design: The lipid A biosynthesis in E. coli was inhibited by CHIR-090, and the RNA was extracted after 10 minutes treatment to capture the effect of increased saturated fatty acid on global gene expression.
Project description:Escherichia coli (E. coli) amine oxidase (ECAO) encoded by tynA gene has been one of the model enzymes to study the mechanism of oxidative deamination of amines to the corresponding aldehydes by amine oxidases. The biological roles of ECAO have been less addressed. Therefore we have constructed a gene deletion Escherichia coli K-12 strain, E. coli tynA-, and used the microarray technique to address its function by comparing the total RNA gene expression to the one of the wt. Our results suggest that tynA is a reserve gene for stringent environmental conditions and its gene product ECAO a growth advantage compared to other bacteria due to H2O2 production.
Project description:The purpose of this study is to determine whether the presence of pathogenic Escherichia coli in colon is associated with psychiatric disorders.
Project description:Intercalated cells are known to be involved in acid-base homeostasis via vacuolar ATPase (H+-ATPase or V-ATPase) expression. Increasing evidence supports an innate immune role for ICs along with their traditional function of pH regulation. In this study, human kidney tissue was enriched for viable intercalated cells then exposed to uropathogenic E. coli versus saline control. Single cell transcriptomics was performed. Six intercalated cell subtypes were identified including hybrid principal-intercalated cells. Cell specific cluster marker gene list generated from this sequencing data was put through ingenuity pathway analysis pipeline which predicted “phagosome maturation” as a key biological pathway that increased in rank following exposure to uropathogenic E. coli in two of the intercalated cell subtypes. Uptake of E. coli and pHrodo coated E. coli BioParticlesTM during live animal intravital microscopy demonstrated that intercalated cell phagocytosis of bacteria was an active process that involved acidification. Taken together, our finding indicate that intercalated cells represent an epithelial cell with characteristics of professional phagocytes like macrophages or neutrophils, which includes the ability to phagocytose E. coli and acidify phagolysosomes.
Project description:The goal of this study is to compare gene expression data for a well known model organism (Escherichia coli) using different technologies (NGS here, microarray from GSE48776).
Project description:Despite the characterization of many aetiologic genetic changes. The specific causative factors in the development of sporadic colorectal cancer remain unclear. This study was performed to detect the possible role of Enteropathogenic Escherichia coli (EPEC) in developing colorectal carcinoma.
Project description:Purpose: We use the gene expression data to estimate the effects of tetracycline on gene expression and average ribosome density. Methods: The mRNAs were extracted with TRIzol reagent. The mRNAs were fragmented into 280 bp and the sequencing process was conducted on HiSeq 2500 platform. We use cutadapt, bowtie2, Plastid and DEseq2 software to analyze the expression levels of genes in two Escherichia coli strains. Results: The gene expression in EF4 knockout Escherichia coli strain was similar with BW25113 strain under normal condition. Under tetracycline treatment, many genes' expression were differentially regulated. Interestingly, we found that the gene expression of ribosomal proteins was up-regulated in WT strain comparing with EF4 knockout E. coli strain. Conclusions: Our results suggest that EF4 affects the average ribosome density and global gene expression in two Escherichia coli strain under tetracycline treatment.
Project description:Cinnamaldehyde is a natural antimicrobial and has been found to be effective against many foodborne pathogens including Escherichia coli O157:H7. Although its antimicrobial effects have been well investigated, limited information is available on its effects at the molecular level. Sublethal treatment at 200 mg/l cinnamaldehyde inhibited growth of E. coli O157:H7 at 37oC and for ≤ 2 h caused cell elongation, but from 2 to 4 h growth resumed and cells reverted to normal length. To understand this transient behaviour, genome-wide transcriptional analysis of E. coli O157:H7 was performed at 2 and 4 h exposure to cinnamaldehyde. Drastically different gene expression profiles were obtained at 2 and 4 h. At 2 h exposure, cinnamaldehyde induced overexpression of many oxidative stress-related genes, reduced DNA replication, and synthesis of protein, O-antigen and fimbriae. At 4 h, many cinnamaldehyde-induced repressive effects on E. coli O157:H7 gene expressions were reversed and oxidatve stress genes were nolonger differentially expressed.