Project description:Despite accepted health benefits of dietary fiber, little is known about the mechanisms by which fiber deprivation impacts the gut microbiota and alters disease risk. Using a gnotobiotic model, in which mice were colonized with a synthetic human gut microbiota, we elucidated the functional interactions between dietary fiber, the gut microbiota and the colonic mucus barrier, which serves as a primary defence against pathogens. We show that during chronic or intermittent dietary fiber deficiency, the gut microbiota resorts to host-secreted mucus glycoproteins as a nutrient source, leading to erosion of the colonic mucus barrier. Dietary fiber deprivation promoted greater epithelial access and lethal colitis by the mucosal pathogen, Citrobacter rodentium, but only in the presence of a fiber-deprived microbiota that is pushed to degrade the mucus layer. Our work reveals intricate pathways linking diet, gut microbiome and intestinal barrier dysfunction, which could be exploited to improve health using dietary therapeutics. Germ-free mice (Swiss Webster) were colonized with synthetic human gut microbiota comprising of 14 species belonging to five different phyla (names of bacterial species: Bacteroides thetaiotaomicron, Bacteroides ovatus, Bacteroides caccae, Bacteroides uniformis, Barnesiella intestinihominis, Eubacterium rectale, Marvinbryantia formatexigens, Collinsella aerofaciens, Escherichia coli HS, Clostridium symbiosum, Desulfovibrio piger, Akkermansia muciniphila, Faecalibacterium prausnitzii and Roseburia intestinalis). These mice were fed either a fiber-rich diet or a fiber-free diet for about 6 weeks. The mice were then sacrificed and their cecal tissues were immediately flash frozen for RNA extraction. The extracted RNA was subjected to microarray analysis based on Mouse Gene ST 2.1 strips using the Affy Plus kit. Expression values for each gene were calculated using robust multi-array average (RMA) method.
Project description:Background & Aims: The complex interactions between diet and the microbiota that influence mucosal inflammation and inflammatory bowel disease are poorly understood. Experimental colitis models provide the opportunity to control and systematically perturb diet and the microbiota in parallel to quantify the contributions between multiple dietary ingredients and the microbiota on host physiology and colitis. Methods: To examine the interplay of diet and the gut microbiota on host health and colitis, we fed over 40 different diets with varied macronutrient sources and concentrations to specific pathogen free or germ free mice either in the context of healthy, unchallenged animals or dextran sodium sulfate colitis model. Results: Diet influenced physiology in both health and colitis across all models, with the concentration of protein and psyllium fiber having the most profound effects. Increasing dietary protein elevated gut microbial density and worsened DSS colitis severity. Depleting gut microbial density by using germ-free animals or antibiotics negated the effect of a high protein diet. Psyllium fiber influenced host physiology and attenuated colitis severity through microbiota-dependent and microbiota-independent mechanisms. Combinatorial perturbations to dietary protein and psyllium fiber in parallel explain most variation in gut microbial density, intestinal permeability, and DSS colitis severity, and changes in one ingredient can be offset by changes in the other. Conclusions: Our results demonstrate the importance of examining complex mixtures of nutrients to understand the role of diet in intestinal inflammation. Keywords: IBD; Diet; Microbiota; Mouse Models; Systems Biology
Project description:To study the underlying mechanism of erinacines derived from Hericium erinaceus in neuroprotective effect against neurodegenerative diseases, we used the next-generation sequencing technology and bioinformatic analyses, erinacine S was found to cause the accumulation of neurosteroids in neurons. Additionally, we found that erinacine S enhances neurite outgrowth in a cell autonomous fashion of primary neurons. It also promotes post-injury axon regeneration of PNS neurons and enhances regeneration on inhibitory substrates of CNS neurons. This research uncovers a previously unknown effect of erinacine S on promoting neuronal regeneration via raising the level of neurosteroids.
Project description:A diet rich in dietary fiber and polyphenols supports the normal intestinal barrier function crucial for intestinal and overall health. Birch wood-derived fiber containing glucuronoxylans (GX)- and polyphenols have the potential in multiple food technological applications and have favorable effects on gut microbiota and colonic metabolism. However, their impact on intestinal barrier function is unknown. To elucidate their potential as new intestinal health-supporting food ingredients, we investigated the effect of GX- and polyphenol-rich extract (GXpoly ) and highly purified GX-rich extract (pureGX) on the gene expression of the colon mucosa.
Project description:Dietary lipids can affect metabolic health through gut microbiota-mediated mechanisms, but the influence of lipid-microbiota interaction on liver steatosis is unknown. We investigated the effect of dietary lipid composition on human microbiota in an observational study and combined diet experiments with microbiota transplants to study lipid-microbiota interactions and liver status in mice. In humans, low intake of saturated fatty acids (SFA) was associated with increased microbial diversity independent of fiber intake. In mice, cecum levels of SFA correlated negatively with microbial diversity and were associated with a shift in butyrate and propionate producers. Mice fed poorly absorbed SFA had improved metabolism and liver status. These features were transmitted by microbial transfer. Diets enriched in n-6- and/or n-3-polyunsaturated fatty acids were protective against steatosis but had minor influence on the microbiota. In summary, we find that unabsorbed SFA correlate with microbiota features that may be targeted to decrease liver steatosis.
Project description:Gut microbiota dysbiosis characterizes systemic metabolic alteration, yet its causality is debated. To address this issue, we transplanted antibiotic-free conventional wild-type mice with either dysbiotic (“obese”) or eubiotic (“lean”) gut microbiota and fed them either a NC or a 72%HFD. We report that, on NC, obese gut microbiota transplantation reduces hepatic gluconeogenesis with decreased hepatic PEPCK activity, compared to non-transplanted mice. Of note, this phenotype is blunted in conventional NOD2KO mice. By contrast, lean microbiota transplantation did not affect hepatic gluconeogenesis. In addition, obese microbiota transplantation changed both gut microbiota and microbiome of recipient mice. Interestingly, hepatic gluconeogenesis, PEPCK and G6Pase activity were reduced even once mice transplanted with the obese gut microbiota were fed a 72%HFD, together with reduced fed glycaemia and adiposity compared to non-transplanted mice. Notably, changes in gut microbiota and microbiome induced by the transplantation were still detectable on 72%HFD. Finally, we report that obese gut microbiota transplantation may impact on hepatic metabolism and even prevent HFD-increased hepatic gluconeogenesis. Our findings may provide a new vision of gut microbiota dysbiosis, useful for a better understanding of the aetiology of metabolic diseases. all livers are from NC-fed mice only.
Project description:Cancer cachexia and the associated skeletal muscle wasting are considered poor prognostic factors, although effective treatment has not yet been established. Recent studies have indicated that the pathogenesis of skeletal muscle loss may involve dysbiosis of the gut microbiota and the accompanying chronic inflammation or altered metabolism. In this study, we evaluated the possible effects of modifying the gut microenvironment with partially hydrolyzed guar gum (PHGG), a soluble dietary fiber, on cancer-related muscle wasting and its mechanism using a colon-26 murine cachexia model. Compared to a fiber-free (FF) diet, PHGG contained fiber-rich (FR) diet attenuated skeletal muscle loss in cachectic mice by suppressing the elevation of the major muscle-specific ubiquitin ligases Atrogin-1 and MuRF1, as well as the autophagy markers LC3 and Bnip3. Although tight junction markers were partially reduced in both FR and FF diet-fed cachectic mice, the abundance of Bifidobacterium, Akkermansia, and unclassified S24-7 family increased by FR diet, contributing to the retention of the colonic mucus layer. The reinforcement of the gut barrier function resulted in the controlled entry of pathogens into the host system and reduced circulating levels of lipopolysaccharide-binding protein (LBP) and IL-6, which in turn led to the suppression of proteolysis by downregulating the ubiquitin-proteasome system and autophagy pathway. These results suggest that dietary fiber may have the potential to alleviate skeletal muscle loss in cancer cachexia, providing new insights for developing effective strategies in the future.
Project description:The gut microbiota influences host epigenetics by fermenting dietary fiber into butyrate. Although butyrate could promote histone acetylation by inhibiting histone deacetylases, it may also undergo oxidation to acetyl-CoA, a necessary cofactor for histone acetyltransferases. Here, we find that epithelial cells from germ-free mice harbor a loss of histone H4 acetylation across the genome except at promoter regions. Using stable isotope tracing in vivo with 13C-labeled fiber, we demonstrate that the microbiota supplies carbon for histone acetylation. Subsequent metabolomic profiling revealed hundreds of labeled molecules and supported a microbial contribution to host fatty acid metabolism, which declined in response to colitis and correlated with reduced expression of genes involved in fatty acid oxidation. These results illuminate the flow of carbon from the diet to the host via the microbiota, disruptions to which may affect energy homeostasis in the distal gut and contribute to the development of colitis.
Project description:Increasing the consumption of dietary fibre has been proposed to alleviate the progression of non-communicable diseases such as obesity, type 2 diabetes and cardiovascular disease, yet the effect of dietary fibre on host physiology remains unclear. In this study, we performed a multiple diet feeding study in C57BL/6J mice to compare high fat and high fat modified with dietary fibre diets on host physiology and gut homeostasis by combining proteomic, metagenomic, metabolomic and glycomic techniques with correlation network analysis. We observed significant changes in physiology, liver proteome, gut microbiota and SCFA production in response to high fat diet. Dietary fibre modification did not reverse these changes but was associated with specific changes in the gut microbiota, liver proteome, SCFA production and colonic mucin glycosylation. Furthermore, correlation network analysis identified gut bacterial-glycan associations.