Project description:A transcriptome analysis of P. alba cambial zone was performed with the aim to unravel the gene network underlying the response to water deficit within the cambium and the differentiating derivatives cambial cells. Water stress was induced on one-year-old plant of Populus alba by withholding water for 9 days. At that time, leaf Ψpd fell down to -0,8 MPa resulting in a significant reduction of the stomatal conductance, CO2 assimilation, consistent increment of stem shrinkage and cessation of the radial growth. These effects were almost fully reversed by re-hydration. The water deficit resulted in changes in gene expression that affected a few functional categories as protein metabolism, cell wall metabolism, stress response, transporters and transcriptional regulation. The function of up- and down-regulated genes is discussed considering the physiological response of the plants to water deficit.
Project description:A transcriptome analysis of P. alba cambial zone was performed with the aim to unravel the gene network underlying the response to water deficit within the cambium and the differentiating derivatives cambial cells. Water stress was induced on one-year-old plant of Populus alba by withholding water for 9 days. At that time, leaf Ψpd fell down to -0,8 MPa resulting in a significant reduction of the stomatal conductance, CO2 assimilation, consistent increment of stem shrinkage and cessation of the radial growth. These effects were almost fully reversed by re-hydration. The water deficit resulted in changes in gene expression that affected a few functional categories as protein metabolism, cell wall metabolism, stress response, transporters and transcriptional regulation. The function of up- and down-regulated genes is discussed considering the physiological response of the plants to water deficit. Three-condition experiment, Stress vs. Control, Re-hydrated vs. Stress and Re-hydrated vs Control. Each sample consists of a pool of two plants independently grown and harvested. Two technical replicates are performed for each of the three treatments. One swap replicate per array.
Project description:Here we applied a novel approach to isolate nuclei from complex plant tissues (https://doi.org/10.1371/journal.pone.0251149), to dissect the transcriptome profiling of the hybrid poplar (Populus tremula × alba) vegetative shoot apex at single-cell resolution.
Project description:Microarray technology was used to assess transcriptome changes in poplar (Populus alba L.) under a realistic simulation of increased UV-B radiation. Plants were UV-Bbe (UV-B biologically effective radiation) supplemented with a dose of 6 kJ/m2/day for 12 hours per day and allowed to recover during the night. Poplar plants were UV-B treated using a refined controlled environment able to guarantee a realistic simulation of natural conditions, especially for light parameters such as presence of background UV-B radiation for control plants and balanced PAR/UV-A/UV-B ratio. A time course experiment was planned to look both at the rapid and delayed response of poplar to UVB; two time points after 3 h (T3h) and 30 h (6th hour of the third day of treatment, T30h) were considered. 4 independent biological replicates were analysed for each time point. Competitive hybridisations were carried out using the PICME 28K microarray. Keywords: Time course experiment, stress response
Project description:We take one-year-old plants for short-term water deficit treatments and controls. We use the Affymetrix Poplar GeneChip to decrypt the gene functions and mechanisms in Populus simonii leaves and detail the global program of gene expression during water deficit treatments.
Project description:Microarray technology was used to assess transcriptome changes in poplar (Populus alba L.) under a realistic simulation of increased UV-B radiation. Plants were UV-Bbe (UV-B biologically effective radiation) supplemented with a dose of 6 kJ/m2/day for 12 hours per day and allowed to recover during the night. Poplar plants were UV-B treated using a refined controlled environment able to guarantee a realistic simulation of natural conditions, especially for light parameters such as presence of background UV-B radiation for control plants and balanced PAR/UV-A/UV-B ratio. A time course experiment was planned to look both at the rapid and delayed response of poplar to UVB; two time points after 3 h (T3h) and 30 h (6th hour of the third day of treatment, T30h) were considered. 4 independent biological replicates were analysed for each time point. Competitive hybridisations were carried out using the PICME 28K microarray. Keywords: Time course experiment, stress response Two condition experiment: UVB supplemented plants vs normal UV-B level plants. Biological replicates: 4 UVB suplemented plants, 4 control plants, two time points, one replicate per array. Dye swap between replicates.
Project description:We take one-year-old plants for short-term water deficit treatments and controls. We use the Affymetrix Poplar GeneChip to decrypt the gene functions and mechanisms in Populus simonii leaves and detail the global program of gene expression during water deficit treatments. Populus simonii leaves were taken from short-term water-deficit-treated plants and control plants for RNA extraction and hybridization on Affymetrix microarrays. D1 and D2 are from water-deficit-treated plants, CK1 and CK2 are controls.
Project description:We performed that comprehensive identification of genes responsible for stress tolerance by analyzing the whole-genome expression profiles of poplar (Populus alba × P. glandulosa) leaves exposed to drought and salt stresses. Examination at the molecular level how this tree species responds to drought and salt stresses by regulating the expression of genes involved in signal transduction, transcriptional regulation, and stress responses.
Project description:affy_pop_2011_08 - poplar bent study - genes regulated by PtaZFP2 in absence of mechanical stress - genes regulated by PtaZFP2 after one bending.Species: Populus tremula x Populus alba-- The laboratory previously established a poplar transgenic line overexpressing PtaZFP2 under the control of an estradiol-inducible promoter. - the experiment, conducted on 3-month-old hydroponically-grown poplars, consists in the comparison of WT poplars treated with estradiol and the PtaZFP2-overexpressing line treated with estradiol. We also compared unbent and bent PtaZFP2-overexpressing poplars. The applied strain is quantitatively controlled (Coutand & Moulia, 2000, JExpBot; coutand et al., 2009, Plant Physiology) - 27 arrays - poplar; gene knock in (transgenic)
Project description:affy_pop_2011_08 - poplar estradiol study - genes regulated by PtaZFP2 in absence of mechanical stress - genes regulated by PtaZFP2 after one bending.Species: Populus tremula x Populus alba-The laboratory previously established a poplar transgenic line overexpressing PtaZFP2 under the control of an estradiol-inducible promoter. - the experiment, conducted on 3-month-old hydroponically-grown poplars, consists in the comparison of WT poplars treated with estradiol and the PtaZFP2-overexpressing line treated with estradiol. We also compared unbent and bent PtaZFP2-overexpressing poplars. The applied strain is quantitatively controlled (Coutand & Moulia, 2000, JExpBot; coutand et al., 2009, Plant Physiology)