Project description:We deep-sequenced small RNAs after immunoprecipitation of Mili or Miwi, as well as total small RNA from adult mouse testis. The goal of this experiment is to more deeply characterize the piRNA pool from adult mouse testes, using the Illumina platform.
2010-01-04 | GSE19172 | GEO
Project description:small RNA-seq of P0 mouse testes
Project description:RNAs that are enriched in AGO2 Immunoprecipitated (IP) products or PIWIL1 IP products were identified from mouse(BALB/C) adult testes by examine the ratio of total RNA signal intensity to AGO2 IP RNA or PIWIL1 IP RNA signal intensity. Two-condition experiment,Total RNA extracted from mouse adult testes vs. AGO2 IP RNA extracted from mouse adult testes and total RNA extracted from mouse adult testes vs. PIWIL1 IP RNA extracted from mouse adult testes.
Project description:We deep-sequenced small RNAs after immunoprecipitation of Mili or Miwi, as well as total small RNA from adult mouse testis. The goal of this experiment is to more deeply characterize the piRNA pool from adult mouse testes, using the Illumina platform. Comparison of 2 IP libraries with a non-IP library
Project description:Small RNAs are now known to be major regulatory factors of gene expression. Emerging methods based on deep-sequencing have enabled the analysis of small RNA expression in a high-throughput manner, leading to the identification of large numbers of small RNAs in various species. Moreover, profiling small RNA data together with transcriptome data enables transcriptional and post-transcriptional regulation mediated by small RNAs to be hypothesized. Here, we isolated PIWIL1 (MIWI)-associated small RNAs from mouse testes, and performed small RNA-seq analysis. In addition, directional RNA-seq was performed using Piwil1 mutant mouse testes. Using these data, we describe protocols for analyzing small RNA-seq reads to obtain profiles of small RNAs associated with PIWI proteins. We also present bioinformatic protocols for analyzing RNA-seq reads that aim to annotate expression of piRNA clusters and identify genes regulated by piRNAs.
Project description:Small RNAs mediate gene silencing by binding Argonaute/Piwi proteins to regulate target RNAs. Here we describe small RNA profiling of the adult testes of Callithrix jacchus, the common marmoset. The most abundant class of small RNAs in the adult testis was piRNAs, while 353 novel miRNAs but few endo-siRNAs were also identified. MARWI, a marmoset homolog of mouse MIWI and a very abundant PIWI in adult testes, associates with piRNAs that show characteristics of mouse pachytene piRNAs. As in other mammals, most marmoset piRNAs are derived from conserved clustered regions in the genome, which are annotated as intergenic regions. However, some of these piRNA cluster regions contain antisense-orientated pseudogenes, suggesting regulation of parental functional protein-coding genes. More piRNAs map to transposable element (TE) subfamilies when they have copies in piRNA clusters. In addition, the strand-bias observed for piRNAs mapped to each TE subfamily correlates with the polarity of copies inserted in clusters. These findings suggest that pachytene piRNA clusters determine the abundance and strand-bias of TE-derived piRNAs, and also regulate protein-coding genes via pseudogene-derived piRNAs. small RNA levels in the adult marmoset testis, and MARWI-IP small RNA levels and RNA levels from the adult marmoset testis with two replicates.