Project description:Compound electric field pretreatment and sequencing of hydrogen production genes from dark fermentation of corn stover enzymatic products
Project description:Metabolic flexibility in aerobic methane oxidising bacteria (methanotrophs) enhances cell growth and survival in instances where resources are variable or limiting. Examples include the production of intracellular compounds (such as glycogen or polyhydroxyalkanoates) in response to unbalanced growth conditions and the use of some energy substrates, besides methane, when available. Indeed, recent studies show that verrucomicrobial methanotrophs can grow mixotrophically through oxidation of hydrogen and methane gases via respiratory membrane-bound group 1d [NiFe] hydrogenases and methane monooxygenases respectively. Hydrogen metabolism is particularly important for adaptation to methane and oxygen limitation, suggesting this metabolic flexibility may confer growth and survival advantages. In this work, we provide evidence that, in adopting a mixotrophic growth strategy, the thermoacidophilic methanotroph, Methylacidiphilum sp. RTK17.1 changes its growth rate, biomass yields and the production of intracellular glycogen reservoirs. Under nitrogen-fixing conditions, removal of hydrogen from the feed-gas resulted in a 14 % reduction in observed growth rates and a 144% increase in cellular glycogen content. Concomitant with increases in glycogen content, the total protein content of biomass decreased following the removal of hydrogen. Transcriptome analysis of Methylacidiphilum sp. RTK17.1 revealed a 3.5-fold upregulation of the Group 1d [NiFe] hydrogenase in response to oxygen limitation and a 4-fold upregulation of nitrogenase encoding genes (nifHDKENX) in response to nitrogen limitation. Genes associated with glycogen synthesis and degradation were expressed constitutively and did not display evidence of transcriptional regulation. Collectively these data further challenge the belief that hydrogen metabolism in methanotrophic bacteria is primarily associated with energy conservation during nitrogen fixation and suggests its utilisation provides a competitive growth advantage within hypoxic habitats.
Project description:In the present work, Abortiporus biennis, a white-rot fungus, was studied in regard to its lignocellulolytic enzymatic potential. Secretomics analyses, combined with biochemical methods, were employed to study the enzymatic machinery of the strain, after growth in corn stover cultures and xylose-based defined media. The results revealed the presence of all the necessary enzymatic activities for complete breakdown of the lignocellulosic substrate, while the prominent role of oxidative enzymes in the lignocellulolytic strategy of the strain became evident. Two novel laccases, AbiLac1 and AbiLac2, were isolated from the culture supernatant of this fungus.
2022-11-25 | PXD032691 | Pride
Project description:Hydrogen production from lactic acid (optimization)
| PRJNA1216649 | ENA
Project description:Hydrogen and methane production from vinasse and molasse sugarcane co-digestion
Project description:Total RNA from rumen epithelial tissues of cows fed alfalfa hay (AL),Rice straw (RS) or Corn stover (CS)diet were sequenced using Illumina Hiseq 2000 system. For comparative analysis, differentially expressed genes were identified with edgeR.
Project description:Total RNA from duodenum, jejunum, liver and mammary gland tissues of cows fed alfalfa hay (AL),Rice straw (RS) or Corn stover (CS) diet were sequenced using Illumina HiSeq 2000 system. For comparative analysis, differentially expressed genes were identified with edgeR and SAS software.
2020-03-05 | GSE78524 | GEO
Project description:Molecular evolution mechanism of Candida tropicalis to inhibitory compounds derived from corn stover hydrolysis