Project description:In rodents, brown adipose tissue (BAT) contributes to whole body energy expenditure and low BAT activity is related to hepatic fat accumulation, partially attributable to the gut microbiome. Little is known of these relationships in humans. In adults (n=60), we assessed hepatic fat and cold-stimulated BAT activity utilizing magnetic resonance imaging and the gut microbiome with 16S sequencing. We transplanted gnotobiotic mice with feces from humans to assess the transferability of BAT activity and NAFLD through the microbiome. Individuals with NAFLD (n=29) had lower BAT activity than those without and BAT activity was inversely related to hepatic fat. Although the fecal microbiome was different in those with NAFLD, no differences were observed in relation to BAT activity and neither of these phenotypic traits were transmissible through fecal transplant to gnotobiotic mice. Thus, low BAT activity is associated with hepatic steatosis but this is not mediated through the gut microbiota.
Project description:Opioids such as morphine have many beneficial properties as analgesics, however, opioids may induce multiple adverse gastrointestinal symptoms. We have recently demonstrated that morphine treatment results in significant disruption in gut barrier function leading to increased translocation of gut commensal bacteria. However, it is unclear how opioids modulate the gut homeostasis. By using a mouse model of morphine treatment, we studied effects of morphine treatment on gut microbiome. We characterized phylogenetic profiles of gut microbes, and found a significant shift in the gut microbiome and increase of pathogenic bacteria following morphine treatment when compared to placebo. In the present study, wild type mice (C57BL/6J) were implanted with placebo, morphine pellets subcutaneously. Fecal matter were taken for bacterial 16s rDNA sequencing analysis at day 3 post treatment. A scatter plot based on an unweighted UniFrac distance matrics obtained from the sequences at OTU level with 97% similarity showed a distinct clustering of the community composition between the morphine and placebo treated groups. By using the chao1 index to evaluate alpha diversity (that is diversity within a group) and using unweighted UniFrac distance to evaluate beta diversity (that is diversity between groups, comparing microbial community based on compositional structures), we found that morphine treatment results in a significant decrease in alpha diversity and shift in fecal microbiome at day 3 post treatment compared to placebo treatment. Taxonomical analysis showed that morphine treatment results in a significant increase of potential pathogenic bacteria. Our study shed light on effects of morphine on the gut microbiome, and its role in the gut homeostasis.
Project description:We report that monocytes contribute to the maintenance of BAT macrophages in a dynamic manner at steady state, and allow tissue remodelling during BAT expansion. Using scRNA-Seq, we explored monocyte and macrophage diversity in BAT at steady state and during BAT expansion.
2021-06-13 | GSE177635 | GEO
Project description:Infant skin bacterial diversity in USA and Mexico
Project description:Ammonia-oxidizing archaeal (AOA) amoA diversity and relative abundance in Gulf of Mexico sediments (0-2 cm) were investigated using a functional gene microarray; a two color array with a universal internal standard
2013-03-01 | GSE42286 | GEO
Project description:Amphibian skin microbiome (16S metabarcoding) - Guatemala and Mexico
Project description:The skin Microbiome stratifies Patients with CTCL into two subgroups. One subgroup has a balanced microbiome, while the other subgroups has a skin dybiosis with S. aureus outgrowth. This is accompanied by impaired TCR repertoire and poor clinical outcome.