Project description:Hyperactivation of phosphatidylinositol-3 kinase (PI3K) promotes escape from hormone dependence in estrogen receptor-positive breast cancer. A significant fraction of breast cancers exhibit de novo or acquired resistance to estrogen deprivation. We used gene expression microarrays to identify genes and pathways that are commonly dysregulated in ER+ cell lines with acquired hormone-independent growth. MCF-7, ZR75-1, MDA-361, and HCC-1428 ER+, estrogen-responsive breast cancer cells were cultured under hormone-depleted conditions (10% DCC-FBS) for several months until sustainable hormone-independent cell populations emerged. Parental and long-term estrogen-deprived (LTED) cells were treated with 10% dextran-coated charcoal-treated fetal bovine serum (DCC-FBS) x 24 hrs prior to RNA harvest for array analysis.
Project description:Hyperactivation of phosphatidylinositol-3 kinase (PI3K) promotes escape from hormone dependence in estrogen receptor-positive breast cancer. A significant fraction of breast cancers exhibit de novo or acquired resistance to estrogen deprivation. We used gene expression microarrays to identify genes and pathways that are commonly dysregulated in ER+ cell lines with acquired hormone-independent growth. MCF-7, ZR75-1, MDA-361, and HCC-1428 ER+, estrogen-responsive breast cancer cells were cultured under hormone-depleted conditions (10% DCC-FBS) for several months until sustainable hormone-independent cell populations emerged.
Project description:Adipose stromal cells (ASCs) are the primary source of local estrogens in adipose tissue, aberrant production of which promotes estrogen receptor-positive (ER+) breast cancer. Here we show that extracellular matrix (ECM) rigidity and cell contractility are two opposing determinants for estrogen output of ASCs. Using synthetic ECMs and elastomeric micropost arrays with tunable rigidity, we find that increasing matrix compliance induces transcription of aromatase, a rate-limiting enzyme in estrogen biosynthesis. This mechanical cue is transduced sequentially by Discoidin Domain Receptor 1 (DDR1), c-Jun N-terminal kinase 1 (JNK1), and phosphorylated JunB, which binds to and activates two breast cancer-associated aromatase promoters. In contrast, elevated cell contractility due to actin stress fiber formation dampens aromatase transcription. Mechanically stimulated stromal estrogen production enhances estrogen-dependent transcription in ER+ tumor cells and promotes their growth. This novel mechanotransduction pathway underlies communications between ECM, stromal hormone output, and cancer cell growth within the same microenvironment. Total RNA was isolated from primary adipose stromal cells after 2d culture or 3d Collagen gel for 21 hours. Triplicates for each conditioned were analyzed
Project description:Transcriptomics analyses to study the effect of the imidazopyridine X15695 on proliferation of estrogen receptor positive (ER+) breast and androgen receptor positive (AR+) prostate cancer cells. The effect of X15695 was analyzed on vehicle or steroid hormone-treated breast and prostate cancer cells.
Project description:Estrogen receptor positive breast cancer is the most prevalent form of breast cancer. Although a number of available drugs are highly effective at blocking estrogen mediated receptor activity, thousands of patients die every year from ER positive breast cancers because the disease progresses to a stage at which these drugs are no longer effective. Thus, it is crucial to establish a comprehensive understanding of the biology of the estrogen receptor (ER) in ER:positive breast cancers that progress despite hormone therapy, a gap in knowledge that remains a serious impediment to successful treatment of patients with ER positive breast cancer. A key question that must be answered is how the estrogen receptor retains the capacity to activate transcription in the absence or near absence of estrogen. We have found a partial answer to this question upon investigating the effect of amplification and overexpression of Wolf Hirschhorn Syndrome Candidate 1:Like 1 (WHSC1L1), a gene that is amplified in 15% of breast cancers that codes for a histone:lysine methyltransferase. WHSC1L1 lies in the 8p11:p12 amplicon, a region of gene amplification that is strongly associated with breast cancer. In this study, we performed shRNA knockdown of the catalytically inactive short isoform of WHSC1L1 in SUM44PE breast cancer cells and found that expression of the short isoform of WHSC1L1 is necessary for expression of the estrogen receptor in this highly ER:positive cell line. In addition, we found that the estrogen receptor binds chromatin extensively in the absence of exogenous estrogen, including several actively transcribed canonical ER target genes, indicating that estrogen receptor signaling is active in SUM44 cells in estrogen free conditions. These findings represent a novel model for ER biology in luminal B breast cancers harboring amplification of WHSC1L1 and provide insight into the mechanisms by which ER: positive breast cancers become unresponsive to SERMs or aromatase inhibitors.
Project description:Adipose stromal cells (ASCs) are the primary source of local estrogens in adipose tissue, aberrant production of which promotes estrogen receptor-positive (ER+) breast cancer. Here we show that extracellular matrix (ECM) rigidity and cell contractility are two opposing determinants for estrogen output of ASCs. Using synthetic ECMs and elastomeric micropost arrays with tunable rigidity, we find that increasing matrix compliance induces transcription of aromatase, a rate-limiting enzyme in estrogen biosynthesis. This mechanical cue is transduced sequentially by Discoidin Domain Receptor 1 (DDR1), c-Jun N-terminal kinase 1 (JNK1), and phosphorylated JunB, which binds to and activates two breast cancer-associated aromatase promoters. In contrast, elevated cell contractility due to actin stress fiber formation dampens aromatase transcription. Mechanically stimulated stromal estrogen production enhances estrogen-dependent transcription in ER+ tumor cells and promotes their growth. This novel mechanotransduction pathway underlies communications between ECM, stromal hormone output, and cancer cell growth within the same microenvironment.
Project description:A significant fraction of breast cancers exhibit de novo or acquired resistance to estrogen deprivation. To model resistance to aromatase inhibitor (AI) therapy, long-term estrogen-deprived (LTED) derivatives of MCF-7 and HCC-1428 cells were generated through culture for 3 and 7 months under hormone-depleted conditions, respectively. These LTED cells showed sensitivity to the ER downregulator fulvestrant under hormone-depleted conditions, suggesting continued dependence upon ER signaling for hormone-independent growth. To evaluate the role of ER in hormone-independent growth, LTED cells were treated +/- 1 uM fulvestrant x 48 h before RNA was harvested for gene expression analysis. MCF-7/LTED and HCC-1428/LTED cells were treated with 10% DCC-FBS with or without the estrogen receptor antagonist drug fulvestrant for 48 hrs prior to RNA harvest for array analysis. Three replicates per condition.
Project description:Split Ends (SPEN) is a transcriptional coregulator that have formerly identified as a tumour suppressor gene in ER-positive breast cancers. However, ER-positive breast cancers are diagnosed at similar frequencies in pre- and post-menopausal women who show significantly different circulating hormone levels. This therefore raises the possibility that SPEN functions under hormone-depleted settings may contrast with its roles in the presence of hormones. We therefore attempted to explore the cellular functions regulated by SPEN under hormone-depleted settings using a previously established model with T47D cells stably transfected with a control vector (non-target) or SPEN-expressing vector. In particular, we attempted to investigate the hormone-independent transcriptional program regulated by SPEN in breast cancer. To achieve this, we have treated previously established T47D cells stably transfected with a control vector (non-target) or SPEN-expressing vector. These cells were allowed to grow in hormone-depleted conditions for 4 days. To minimize external biases introduced by hormone depletion or any transcriptional contribution from the estrogen receptor (ER), we also performed gene expression profiling analyses on the same cells but stimulated with an estrogen receptor (ER) agonist (Estradiol) or antagonist (Tamoxifen).
Project description:Purpose: To characterize the expression of phosphatases in estrogen receptor negative breast cancer Little is known about the role of phosphatases in the major estrogen receptor negative breast cancer phenotypes (i.e. those overexpressing ERBB2 and the triple negative). We carried out microarray phosphatome profiling in 41 estrogen receptor negative (ER-) breast cancer patients (as determined by immunohistochemistry (IHC)) containing both ERBB2+ and ERBB2- in order to characterize the differences between these groups by Statistical Analysis of Microarrays (SAM). Our findings point to the importance of the MAPK and PI3K pathways in ER- BCs as some of the most differentially expressed phosphatases (like DUSP4 and DUSP6) share ERK as substrate, or regulate the PI3K pathway (INPP4B, PTEN). These observations are also confirmed by pathway and GSEA analysis. It is shown that both ER- ERBB2+ and triple negative breast cancers have a distinctive pattern of phosphatase RNA expression. Surgical specimens from primary breast cancers that were estrogen receptor negative according to immunohistochemistry