Project description:Ovarian cancer is characterized by multiple structural aberrations; most are passenger alterations which do not confer tumor growth. Like many cancers, it is a heterogeneous disease and till date, the histotype-specific copy number landscape has been difficult to elucidate. To dissect the heterogeneity of ovarian cancer and understand the pathogenesis of its various histotypes, we developed an in silico hypothesis-driven workflow to identify histotype-specific copy number aberrations across multiple datasets of epithelial ovarian cancer. In concordance with previous studies on global copy number changes, our study showed similar alterations. However, when the landscape was de-convoluted into histotypes, distinct alterations were observed. We report here a comprehensive histotype-specific copy number landscape of ovarian cancer and showed that there is genomic diversity between the histotypes; some involving well known cancer genes and some novel potential driver genes. Besides preferential occurrence of alterations in some histotypes, opposite trends of alteration were observed; such as ERBB2 amplification in mucinous but deletion in serous tumors. The landscape highlights the need for identifying histotype-specific aberrations in ovarian cancer and present potential to tailor management of ovarian cancer based on molecular signature of histotypes. 56 samples containing the 4 histotypes were used for this study. It contained 12 clear cell carcinoma, 6 endometrioid adenocarcinoma, 2 mucinous adenocarcinoma, 5 mucinous-borderline tumors, 26 serous adenocarcinoma, and 5 serous-borderline tumors.
Project description:Ovarian cancer is characterized by multiple structural aberrations; most are passenger alterations which do not confer tumor growth. Like many cancers, it is a heterogeneous disease and till date, the histotype-specific copy number landscape has been difficult to elucidate. To dissect the heterogeneity of ovarian cancer and understand the pathogenesis of its various histotypes, we developed an in silico hypothesis-driven workflow to identify histotype-specific copy number aberrations across multiple datasets of epithelial ovarian cancer. In concordance with previous studies on global copy number changes, our study showed similar alterations. However, when the landscape was de-convoluted into histotypes, distinct alterations were observed. We report here a comprehensive histotype-specific copy number landscape of ovarian cancer and showed that there is genomic diversity between the histotypes; some involving well known cancer genes and some novel potential driver genes. Besides preferential occurrence of alterations in some histotypes, opposite trends of alteration were observed; such as ERBB2 amplification in mucinous but deletion in serous tumors. The landscape highlights the need for identifying histotype-specific aberrations in ovarian cancer and present potential to tailor management of ovarian cancer based on molecular signature of histotypes. 56 samples containing the 4 histotypes were used for this study. It contained 12 clear cell carcinoma, 6 endometrioid adenocarcinoma, 2 mucinous adenocarcinoma, 5 mucinous-borderline tumors, 26 serous adenocarcinoma, and 5 serous-borderline tumors. Data was pre-processed and normalized with Hapmap JPT using the Affymetric Genotyping Console.
Project description:Expression data from serous ovarian carcinomas, serous ovarian borderline tumors and surface epithelium scrapings from normal ovaries
Project description:Background: Ovarian carcinomas consist of at least five distinct diseases: high-grade serous, low-grade serous, clear cell, endometrioid, and mucinous. Biomarker and molecular characterization may represent a more biologically relevant basis for grouping and treating this family of tumors, rather than site of origin. Molecular characteristics have become the new standard for clinical pathology, however development of tailored type-specific therapies is hampered by a failure of basic research to recognize that model systems used to study these diseases must also be stratified. Unrelated model systems do offer value for study of biochemical processes but specific cellular context needs to be applied to assess relevant therapeutic strategies. Methods: We have focused on the identification of clear cell carcinoma cell line models. A panel of 32 “ovarian cancer” cell lines has been classified into histological types using a combination of mutation profiles, IHC mutation-surrogates, and a validated immunohistochemical model. All cell lines were identity verified using STR analysis. Results: Many described ovarian clear cell lines have characteristic mutations (including ARID1A and PIK3CA) and an overall molecular/immuno-profile typical of primary tumors. Mutations in TP53 were present in the majority of high-grade serous cell lines. Advanced genomic analysis of bona-fide clear cell carcinoma cell lines also support copy number changes in typical biomarkers such at MET and HNF1B and a lack of any recurrent expressed re-arrangements. Conclusions: As with primary ovarian tumors, mutation status of cancer genes like ARID1A and TP53 and a general immuno-profile serve well for establishing histological type of ovarian cancer cell We describe specific biomarkers and molecular features to re-classify generic “ovarian carcinoma” cell lines into type specific categories. Our data supports the use of prototype clear cell lines, such as TOV21G and JHOC-5, and questions the use of SKOV3 and A2780 as models of high-grade serous carcinoma.
Project description:To identify the potential ovarian cancer stem cell gene expression profile from isolated side population of fresh ascites obtained from women with high-grade advanced stage papillary serous ovarian adenocarcinoma Microarrays were used to interrogate the differentially expressed genes between side population (SP) and main population (MP) isolated from fresh ascites obtained from women with high-grade advanced stage papillary serous ovarian adenocarcinoma, and the results were analyzed by paired T-test using BRB-ArrayTools
Project description:High grade serous ovarian cancers (HGSC) are deadly malignancies that relapse despite carboplatin chemotherapy. Many commercially ovarian cancer cell lines are not good models for HGSC. Here we demonstrate that 3 low passage cell lines derived from HGSC have similar transcriptomes to their parental bulk tumors. These cell lines recapitulated tumor characteristics of the primary cancer and had responded to therapy in the same manner as primary HGSC cells, demonstrating they are accurate models for HGSCs. mRNA profiles of low passage high grade serous tumor cell lines and their parental tumors, generated by next generation sequencing, were compared.