Project description:Low-grade serous ovarian carcinoma is believed to arise from serous borderline ovarian tumors, yet the progression from serous borderline tumors to low-grade serous ovarian carcinoma remains poorly understood. The purpose of this study was to identify differentially expressed genes between the two groups. Expression profiles were generated from 6 human ovarian surface epithelia (HOSE), 8 serous borderline ovarian tumors (SBOT), 13 low-grade serous ovarian carcinomas (LG), and 22 high-grade serous ovarian carcinomas (HG). The anterior gradient homolog 3 (AGR3) gene was found to be highly upregulated in serous borderline ovarian tumors; this finding was validated by real-time quantitative RT-PCR, Western blotting, and immunohistochemistry. Anti-AGR3 immunohistochemistry was performed on an additional 56 LG and 103 HG tissues and the results were correlated with clinical data. Expression profiling determined that 1254 genes were differentially expressed (P < 0.005) between SBOT, LG and HG tumors. Serous borderline ovarian tumors exhibited robust positive staining for AGR3, with a lower percentage of tumor cells stained in LG and HG. Immunofluorescence staining indicated that AGR3 expression was limited to ciliated cells. Tumor samples with a high percentage (>10%) of AGR3 positively stained tumor cells were associated with improved longer median survival in both the LG (P = 0.013) and HG (P = 0.008) serous ovarian carcinoma groups. The progression of serous borderline ovarian tumors to low-grade serous ovarian carcinoma may involve the de-differentiation of ciliated cells. AGR3 could serve as a prognostic marker for survival in patients with low-grade and high-grade serous ovarian carcinomas. Total RNA were extracted from microdissected human ovarian surface epithelia (HOSE, n=6), and microdissected serous borderline ovarian tumors (LMP, n=8), low-grade serous ovarian carcinomas (LGOSC, n=13), and 22 high-grade serous ovarian carcinomas (HGOSC, n=22). Gene Expression profiles were then generated with commercial GeneChip Human Genome U133 Plus 2.0 Array. dChip was used to identify significant differentially expressed genes between LMP/LGOSC and HGOSC
Project description:Low-grade serous ovarian carcinoma is believed to arise from serous borderline ovarian tumors, yet the progression from serous borderline tumors to low-grade serous ovarian carcinoma remains poorly understood. The purpose of this study was to identify differentially expressed genes between the two groups. Expression profiles were generated from 6 human ovarian surface epithelia (HOSE), 8 serous borderline ovarian tumors (SBOT), 13 low-grade serous ovarian carcinomas (LG), and 22 high-grade serous ovarian carcinomas (HG). The anterior gradient homolog 3 (AGR3) gene was found to be highly upregulated in serous borderline ovarian tumors; this finding was validated by real-time quantitative RT-PCR, Western blotting, and immunohistochemistry. Anti-AGR3 immunohistochemistry was performed on an additional 56 LG and 103 HG tissues and the results were correlated with clinical data. Expression profiling determined that 1254 genes were differentially expressed (P < 0.005) between SBOT, LG and HG tumors. Serous borderline ovarian tumors exhibited robust positive staining for AGR3, with a lower percentage of tumor cells stained in LG and HG. Immunofluorescence staining indicated that AGR3 expression was limited to ciliated cells. Tumor samples with a high percentage (>10%) of AGR3 positively stained tumor cells were associated with improved longer median survival in both the LG (P = 0.013) and HG (P = 0.008) serous ovarian carcinoma groups. The progression of serous borderline ovarian tumors to low-grade serous ovarian carcinoma may involve the de-differentiation of ciliated cells. AGR3 could serve as a prognostic marker for survival in patients with low-grade and high-grade serous ovarian carcinomas.
Project description:Low-grade ovarian serous carcinomas are believed to arise via an adenoma-serous borderline tumor-serous carcinoma sequence. In this study, we found that advanced-stage, low-grade ovarian serous carcinomas both with and without adjacent serous borderline tumor shared similar regions of loss of heterozygosity. We then analyzed 91 ovarian tumor samples for mutations in TP53, BRAF, and KRAS. TP53 mutations were not detected in any serous borderline tumors (n = 30) or low-grade serous carcinomas (n = 43) but were found in 73% of high-grade serous carcinomas (n = 18). BRAF (n = 9) or KRAS (n = 5) mutation was detected in 47% of serous borderline tumors, but among the low-grade serous carcinomas (39 stage III, 2 stage II, and 2 stage I), only one (2%) had a BRAF mutation and eight (19%) had a KRAS mutation. The low frequency of BRAF mutations in advanced-stage, low-grade serous carcinomas, which contrasts with previous findings, suggests that aggressive, low-grade serous carcinomas are more likely derived from serous borderline tumors without BRAF mutation. In addition, advanced-stage, low-grade carcinoma patients with BRAF or KRAS mutation have a better apparent clinical outcome. However, further investigation is needed. Low-grade ovarian serous carcinomas are believed to arise via an adenoma-serous borderline tumor-serous carcinoma sequence. In this study, we found that advanced-stage, low-grade ovarian serous carcinomas both with and without adjacent serous borderline tumor shared similar regions of loss of heterozygosity. We then analyzed 91 ovarian tumor samples for mutations in TP53, BRAF, and KRAS. TP53 mutations were not detected in any serous borderline tumors (n = 30) or low-grade serous carcinomas (n = 43) but were found in 73% of high-grade serous carcinomas (n = 18). BRAF (n = 9) or KRAS (n = 5) mutation was detected in 47% of serous borderline tumors, but among the low-grade serous carcinomas (39 stage III, 2 stage II, and 2 stage I), only one (2%) had a BRAF mutation and eight (19%) had a KRAS mutation. The low frequency of BRAF mutations in advanced-stage, low-grade serous carcinomas, which contrasts with previous findings, suggests that aggressive, low-grade serous carcinomas are more likely derived from serous borderline tumors without BRAF mutation. In addition, advanced-stage, low-grade carcinoma patients with BRAF or KRAS mutation have a better apparent clinical outcome. However, further investigation is needed. Gene expression analysis was performed on five serous borderline tumors with BRAF mutation and five serous borderline tumors without BRAF mutation randomly. RNA was extracted from microdissected tumor cells. Expression profiling was carried out with Affymetrix GeneChip Human Genome U133 Plus 2.0 arrays
Project description:Low-grade ovarian serous carcinomas are believed to arise via an adenoma-serous borderline tumor-serous carcinoma sequence. In this study, we found that advanced-stage, low-grade ovarian serous carcinomas both with and without adjacent serous borderline tumor shared similar regions of loss of heterozygosity. We then analyzed 91 ovarian tumor samples for mutations in TP53, BRAF, and KRAS. TP53 mutations were not detected in any serous borderline tumors (n = 30) or low-grade serous carcinomas (n = 43) but were found in 73% of high-grade serous carcinomas (n = 18). BRAF (n = 9) or KRAS (n = 5) mutation was detected in 47% of serous borderline tumors, but among the low-grade serous carcinomas (39 stage III, 2 stage II, and 2 stage I), only one (2%) had a BRAF mutation and eight (19%) had a KRAS mutation. The low frequency of BRAF mutations in advanced-stage, low-grade serous carcinomas, which contrasts with previous findings, suggests that aggressive, low-grade serous carcinomas are more likely derived from serous borderline tumors without BRAF mutation. In addition, advanced-stage, low-grade carcinoma patients with BRAF or KRAS mutation have a better apparent clinical outcome. However, further investigation is needed. Low-grade ovarian serous carcinomas are believed to arise via an adenoma-serous borderline tumor-serous carcinoma sequence. In this study, we found that advanced-stage, low-grade ovarian serous carcinomas both with and without adjacent serous borderline tumor shared similar regions of loss of heterozygosity. We then analyzed 91 ovarian tumor samples for mutations in TP53, BRAF, and KRAS. TP53 mutations were not detected in any serous borderline tumors (n = 30) or low-grade serous carcinomas (n = 43) but were found in 73% of high-grade serous carcinomas (n = 18). BRAF (n = 9) or KRAS (n = 5) mutation was detected in 47% of serous borderline tumors, but among the low-grade serous carcinomas (39 stage III, 2 stage II, and 2 stage I), only one (2%) had a BRAF mutation and eight (19%) had a KRAS mutation. The low frequency of BRAF mutations in advanced-stage, low-grade serous carcinomas, which contrasts with previous findings, suggests that aggressive, low-grade serous carcinomas are more likely derived from serous borderline tumors without BRAF mutation. In addition, advanced-stage, low-grade carcinoma patients with BRAF or KRAS mutation have a better apparent clinical outcome. However, further investigation is needed.
Project description:Low-grade serous ovarian carcinomas are typically Ras-pathway mutated, TP53 wild-type, have limited chromosomal aberration, and are frequently associated with borderline tumors. By contrast, high-grade serous ovarian carcinoma lack Ras-pathway mutations, are invariably TP53 mutated, show widespread genomic change, and are commonly BRCA-pathway disrupted. We sought to identify differences in genomic copy number changes between co-existing borderline and invasive components of serous carcinoma. Paired co-existing borderline and invasive tumor components of ovarian serous carcinoma were sampled and profiled from tumors from 7 patients
Project description:Low-grade serous ovarian carcinomas are typically Ras-pathway mutated, TP53 wild-type, have limited chromosomal aberration, and are frequently associated with borderline tumors. By contrast, high-grade serous ovarian carcinoma lack Ras-pathway mutations, are invariably TP53 mutated, show widespread genomic change, and are commonly BRCA-pathway disrupted. We sought to identify differentially expressed genes between co-existing borderline and invasive components of serous carcinoma. Paired co-existing borderline and invasive tumor components were profiled from tumors from 7 patients
Project description:Low-grade serous ovarian carcinomas are typically Ras-pathway mutated, TP53 wild-type, have limited chromosomal aberration, and are frequently associated with borderline tumors. By contrast, high-grade serous ovarian carcinoma lack Ras-pathway mutations, are invariably TP53 mutated, show widespread genomic change, and are commonly BRCA-pathway disrupted. We sought to identify differences in genomic copy number changes in borderline and invasive components of serous carcinoma.
Project description:Low-grade serous ovarian carcinomas are typically Ras-pathway mutated, TP53 wild-type, have limited chromosomal aberration, and are frequently associated with borderline tumors. By contrast, high-grade serous ovarian carcinoma lack Ras-pathway mutations, are invariably TP53 mutated, show widespread genomic change, and are commonly BRCA-pathway disrupted. We sought to identify differentially expressed genes between co-existing borderline and invasive components of serous carcinoma.
Project description:Low-grade serous ovarian carcinomas are typically Ras-pathway mutated, TP53 wild-type, have limited chromosomal aberration, and are frequently associated with borderline tumors. By contrast, high-grade serous ovarian carcinoma lack Ras-pathway mutations, are invariably TP53 mutated, show widespread genomic change, and are commonly BRCA-pathway disrupted.We sought to identify differences in genomic copy number changes between co-existing borderline and invasive components of serous carcinoma. Paired co-existing borderline and invasive tumor components were sampled and profiled from formalin-fixed paraffin embedded tumors from 6 patients
Project description:Low-grade serous ovarian carcinomas are typically Ras-pathway mutated, TP53 wild-type, have limited chromosomal aberration, and are frequently associated with borderline tumors. By contrast, high-grade serous ovarian carcinoma lack Ras-pathway mutations, are invariably TP53 mutated, show widespread genomic change, and are commonly BRCA-pathway disrupted. We sought to identify differences in genomic copy number changes in borderline and invasive components of serous carcinoma. Borderline and invasive tumor components were profiled from patients with LGSC