Project description:description Blastocystis sp. is a highly prevalent anaerobic eukaryotic parasite of humans and animals. The genome of several representatives has been sequenced revealing specific traits such as an intriguing 3’-end processing of primary transcripts. We have acquired a first high-throughput proteomics dataset on the difficult to cultivate ST4 isolate WR1 and detected 2,761 proteins. We evidenced for the first time by proteogenomics a functional termination codon derived from transcript polyadenylation for seven different key cellular components.
Project description:Regenerative life support systems for space crews recycle organic and inorganic waste into water, food and oxygen using different organisms. For instance, the European Space Agency's MELiSSA uses Limnospira indica PCC8005 for air revitalisation and food production. Before use in space, the components' compatibility with reduced gravity must be tested. This innovative study introduces a novel ground analog designed specifically for microgravity experiments involving cyanobacteria, employing a cutting-edge random positioning machine (RPM). Limnospira indica PCC8005 was shown to grow slower under simulated microgravity and whole proteome analysis revealed a downregulation of e.g. ribosomal proteins, glutamine synthase and nitrate uptake transporters while an upregulation was found for gas vesicle proteins, carboxysome proteins and phycobiliproteins. All together our results suggested that L. indica experienced carbon limitation when cultivated in simulated microgravity conditions.