Project description:This SuperSeries is composed of the following subset Series: GSE16103: Wild-type versus trf4, trf5, and trf4-DADA mutant cells GSE16105: Trf4p in vivo crosslinking and ribonucleoprotein-immunopurification-chip analysis (X-RIP-Chip) Refer to individual Series
Project description:In vivo cross-linking and ribonucleoprotein-immunopurification experiments followed by microarray analysis of bound RNAs (X-RIP-chip). Cells expressing recombinant tandem-affinity purification (TAP)-tagged Trf4 protein were cross-linked with formaldehyde, and Trf4-containing ribonucleoprotein complexes were recovered by affinity selection on IgG-coupled beads (see linked protocol). As a control for non-specifically enriched RNAs, the same experiment was done with untagged WT cells and with cells expressing Fpr1-TAP, a peptidyl-prolyl-cis-trans-isomerase not expected to bind RNA. Set of arrays organized by shared biological context, such as organism, tumors types, processes, etc. Antigenic peptide used in IP: Protein A derivative Computed
Project description:In vivo cross-linking and ribonucleoprotein-immunopurification experiments followed by microarray analysis of bound RNAs (X-RIP-chip). Cells expressing recombinant tandem-affinity purification (TAP)-tagged Trf4 protein were cross-linked with formaldehyde, and Trf4-containing ribonucleoprotein complexes were recovered by affinity selection on IgG-coupled beads (see linked protocol). As a control for non-specifically enriched RNAs, the same experiment was done with untagged WT cells and with cells expressing Fpr1-TAP, a peptidyl-prolyl-cis-trans-isomerase not expected to bind RNA. Set of arrays organized by shared biological context, such as organism, tumors types, processes, etc. Antigenic peptide used in IP: Protein A derivative
Project description:Protein-RNA interactions are integral components of nearly every aspect of biology including regulation of gene expression, assembly of cellular architectures, and pathogenesis of human diseases. However, studies in the past few decades have only uncovered a small fraction of the vast landscape of the protein-RNA interactome in any organism, and even less is known about the dynamics of protein-RNA interactions under changing developmental and environmental conditions. Here, we describe the gPAR-CLIP (global photoactivatable-ribonucleoside-enhanced crosslinking and immunopurification) approach for capturing regions of the transcriptome bound by RNA-binding proteins (RBPs) in budding yeast. We report over 13,000 RBP crosslinking sites in untranslated regions (UTR) covering 72% of protein-coding transcripts encoded in the genome, confirming 3’ UTRs as major sites for RBP interaction. Comparative genomic analyses reveal that RBP crosslinking sites are highly conserved, and RNA folding predictions indicate that secondary structural elements are constrained by protein binding and may serve as generalizable modes of RNA recognition. Finally, 38% of 3’ UTR crosslinking sites show changes in RBP occupancy upon glucose or nitrogen deprivation, with major impacts on metabolic pathways as well as mitochondrial and ribosomal gene expression. Our study offers an unprecedented view of the pervasiveness and dynamics of protein-RNA interactions in vivo.
Project description:Protein-RNA interactions are integral components of nearly every aspect of biology including regulation of gene expression, assembly of cellular architectures, and pathogenesis of human diseases. However, studies in the past few decades have only uncovered a small fraction of the vast landscape of the protein-RNA interactome in any organism, and even less is known about the dynamics of protein-RNA interactions under changing developmental and environmental conditions. Here, we describe the gPAR-CLIP (global photoactivatable-ribonucleoside-enhanced crosslinking and immunopurification) approach for capturing regions of the transcriptome bound by RNA-binding proteins (RBPs) in budding yeast. We report over 13,000 RBP crosslinking sites in untranslated regions (UTR) covering 72% of protein-coding transcripts encoded in the genome, confirming 3M-bM-^@M-^Y UTRs as major sites for RBP interaction. Comparative genomic analyses reveal that RBP crosslinking sites are highly conserved, and RNA folding predictions indicate that secondary structural elements are constrained by protein binding and may serve as generalizable modes of RNA recognition. Finally, 38% of 3M-bM-^@M-^Y UTR crosslinking sites show changes in RBP occupancy upon glucose or nitrogen deprivation, with major impacts on metabolic pathways as well as mitochondrial and ribosomal gene expression. Our study offers an unprecedented view of the pervasiveness and dynamics of protein-RNA interactions in vivo. Duplicate gPAR-CLIP and mRNA-seq libraries were sequenced from yeast strains for each of three conditions: log-phase growth, growth after 2 hour glucose starvation, and growth after 2 hour nitrogen starvation. Additional duplicate mRNA-seq libraries were sequenced from yeast strains grown in the absence of 4-thiouracil. gPAR-CLIP libraries were used to determine regions of mRNA bound by proteins. mRNA-seq libraries served as controls for mRNA abundance. A Puf3p PAR-CLIP library was sequenced to determine how well gPAR-CLIP captured the binding signatures of a single RNA-binding protein.
Project description:Genome wide mapping of RNA polymearase III binding sites in Saccharomyces cerevisiae under normal growth and nutrient starved condition using ChIP-seq. Chromatin Immuno-precipitation (ChIP) was performed for FLAG tagged version of pol III subunit RPC128 after crosslinking the log-phase cells with formaldehyde. MOCK and IP DNA was sequenced and coverage of pol III was calculated at each base of the genome.
Project description:Genome wide mapping of RNA polymearase III binding sites in Saccharomyces cerevisiae under normal growth and nutrient starved condition using ChIP-seq. Chromatin Immuno-precipitation (ChIP) was performed for FLAG tagged version of pol III subunit RPC128 after crosslinking the log-phase cells with formaldehyde. MOCK and IP DNA was sequenced and coverage of pol III was calculated at each base of the genome. RPC128-FLAG ChIP-seq single end seqquencing on Illumina GAII. 2 replicates of IP samples and 1 MOCK sample. Done in under normal growth and nutrient deprivation (4 hours).