Project description:Background:Commonly known as blister beetles or Spanish fly, there are more than 1500 species in the Meloidae family (Hexapoda: Coleoptera: Tenebrionoidea) that produce the potent defensive blistering agent cantharidin. Cantharidin and its derivatives have been used to treat cancers such as liver, stomach, lung, and esophageal cancers. Hycleus cichorii and Hycleus phaleratus are the most commercially important blister beetles in China due to their ability to biosynthesize this potent vesicant. However, there is a lack of genome reference, which has hindered development of studies on the biosynthesis of cantharidin and a better understanding of its biology and pharmacology. Results:We report 2 draft genomes and quantified gene sets for the blister beetles H. cichorii and H. phaleratus, 2 complex genomes with >72% repeats and approximately 1% heterozygosity, using Illumina sequencing data. An integrated assembly pipeline was performed for assembly, and most of the coding regions were obtained. Benchmarking universal single-copy orthologs (BUSCO) assessment showed that our assembly obtained more than 98% of the Endopterygota universal single-copy orthologs. Comparison analysis showed that the completeness of coding genes in our assembly was comparable to other beetle genomes such as Dendroctonus ponderosae and Agrilus planipennis. Gene annotation yielded 13?813 and 13?725 protein-coding genes in H. cichorii and H. phaleratus, of which approximately 89% were functionally annotated. BUSCO assessment showed that approximately 86% and 84% of the Endopterygota universal single-copy orthologs were annotated completely in these 2 gene sets, whose completeness is comparable to that of D. ponderosae and A. planipennis. Conclusions:Assembly of both blister beetle genomes provides a valuable resource for future biosynthesis of cantharidin and comparative genomic studies of blister beetles and other beetles.
Project description:The Hycleus cichorii and Hycleus phaleratus are two species of medicinal meloids widely distributed in southwest of China. We sequenced an annotated the complete mitochondrial genomes of H. cichorii and H. phaleratus, and the mitogenomes are 15,847 and 16,004 bp in length, respectively. Every mitochondrial genome encodes 13 proteins, 2 ribosomal RNAs, 22 tRNAs, and a control region with the identical arrangement to other beetles. The preliminary phylogenetic analysis with mitochondrial genomes of nine meloid species further confirmed the status of these two species.
| S-EPMC7800676 | biostudies-literature
Project description:genome of Hycleus cichorii and Hycleus phaleratus
| PRJNA390850 | ENA
Project description:RNA-seq of Hycleus Phaleratus
| PRJNA381455 | ENA
Project description:Gut microbes of Hycleus cichorii adults
Project description:Insect mitochondrial genomes (mitogenomes) exhibit high diversity in some lineages. The gene rearrangement and large intergenic spacer (IGS) have been reported in several Coleopteran species, although very little is known about mitogenomes of Meloidae.We determined complete or nearly complete mitogenomes of seven meloid species. The circular genomes encode 13 protein-coding genes (PCGs), 22 transfer RNAs (tRNAs) and two ribosomal RNAs (rRNAs), and contain a control region, with gene arrangement identical to the ancestral type for insects. The evolutionary rates of all PCGs indicate that their evolution is based on purifying selection. The comparison of tRNA secondary structures indicates diverse substitution patterns in Meloidae. Remarkably, all mitogenomes of the three studied Hycleus species contain two large intergenic spacers (IGSs). IGS1 is located between trnW and trnC, including a 9 bp consensus motif. IGS2 is located between trnS2 (UCN) and nad1, containing discontinuous repeats of a pentanucleotide motif and two 18-bp repeat units in both ends. To date, IGS2 is found only in genera Hycleus across all published Coleopteran mitogenomes. The duplication/random loss model and slipped-strand mispairing are proposed as evolutionary mechanisms for the two IGSs (IGS1, IGS2). The phylogenetic analyses using MrBayes, RAxML, and PhyloBayes methods based on nucleotide and amino acid datasets of 13 PCGs from all published mitogenomes of Tenebrionoids, consistently recover the monophylies of Meloidae and Tenebrionidae. Within Meloidae, the genus Lytta clusters with Epicauta rather than with Mylabris. Although data collected thus far could not resolve the phylogenetic relationships within Meloidae, this study will assist in future mapping of the Meloidae phylogeny.This study presents mitogenomes of seven meloid beetles. New mitogenomes retain the genomic architecture of the Coleopteran ancestor, but contain two IGSs in the three studied Hycleus species. Comparative analyses of two IGSs suggest that their evolutionary mechanisms are duplication/random loss model and slipped-strand mispairing.