Project description:Comparison of hexachlorocyclohexane (HCH) contaminated soils from Spain with a community-specific microarray. These results are being submitted for publication and represent the first use of microarrays for analysis of soil DNA and the first community-specific microarray design. Keywords: other
Project description:Comparison of hexachlorocyclohexane (HCH) contaminated soils from Spain with a community-specific microarray. These results are being submitted for publication and represent the first use of microarrays for analysis of soil DNA and the first community-specific microarray design. Keywords: other
Project description:Understanding organisms’ environmental adaptation mechanisms is a fundamental question in ecology and evolution. The oyster Crassostrea gigas is able to accumulate high levels of zinc (Zn) and cadmium (Cd) without self-poisoning, and is thus widely used for pollution detection. However, the molecular mechanisms underlying such stress adaptation are largely unknown. Therefore, this study aimed to provide fundamental insights into the complex Zn/Cd-response regulatory networks.
Project description:Soil microbial community is a complex blackbox that requires a multi-conceptual approach (Hultman et al., 2015; Bastida et al., 2016). Most methods focus on evaluating total microbial community and fail to determine its active fraction (Blagodatskaya & Kuzyakov 2013). This issue has ecological consequences since the behavior of the active community is more important (or even essential) and can be different to that of the total community. The sensitivity of the active microbial community can be considered as a biological mechanism that regulates the functional responses of soil against direct (i.e. forest management) and indirect (i.e. climate change) human-induced alterations. Indeed, it has been highglihted that the diversity of the active community (analyzed by metaproteomics) is more connected to soil functionality than the that of the total community (analyzed by 16S rRNA gene and ITS sequencing) (Bastida et al., 2016). Recently, the increasing application of soil metaproteomics is providing unprecedented, in-depth characterisation of the composition and functionality of active microbial communities and overall, allowing deeper insights into terrestrial microbial ecology (Chourey et al., 2012; Bastida et al., 2015, 2016; Keiblinger et al., 2016). Here, we predict the responsiveness of the soil microbial community to forest management in a climate change scenario. Particularly, we aim: i) to evaluate the impacts of 6-years of induced drought on the diversity, biomass and activity of the microbial community in a semiarid forest ecocosystem; and ii) to discriminate if forest management (thinning) influences the resistance of the microbial community against induced drought. Furthermore, we aim to ascertain if the functional diversity of each phylum is a trait that can be used to predict changes in microbial abundance and ecosystem functioning.
Project description:Metals, including copper (Cu) and nickel (Ni) are among the most common contaminants in soils in Europe. Although their effects are relatively well known regarding survival and reproduction of soil invertebrates, their modes of action in these organisms are still poorly studied. Enchytraeus albidus has been used in soil ecotoxicology for many years, and more recently has a gene library and an oligonucleotide microarray for this species which allowed gene expression studies. This has potentiated the means to study further in depth the mechanisms of response to stressors. The main aim of this study is to understand the mechanisms of response of E. albidus to Cu and Ni. For that we have 1) assessed and compared the transcriptomic profile of E. albidus in response to Cu and Ni and 2) compared the Cu, Ni, Cd and Zn transcriptomic profiles. For the microarray hybridizations, E. albidus were exposed to the reproduction effect concentrations EC50 and EC90 of Cu and Ni during 4 days. Results indicate that Cu and Ni have to some extent, similar mechanisms of toxicity and that have already been identified in other species, indicating cross-species conserved mechanisms. Based on hierarchical clustering, it was possible to observe a clear separation of Cd treatments from all other metals. This separation strongly correlates with the available information regarding the toxicokinetics of the tested metals, in which Ni shows properties similar to essential metals.