Project description:Black rot, caused by Xanthomonas campestris pv. campestris (Xcc) is one of the most devastating diseases of cruciferous crops worldwide. The pathogen infects and multiplies in plant vascular tissues and, as the disease progresses, the veins of infected tissues turn black and characteristic V-shaped lesions appear along the margins of leaves.The aim of this work is to identify differentially expressed genes from Brassica oleracea during early infection by Xcc, in an attempt to identify proteins related to resistance.
Project description:Xylem sap of young cabbage plantlets was recovered from root pressure exudation and used as a growth medium for the vascular pathogen Xanthomonas campestris pv campestris, the causative agent of the black rot of Brassicaceae.
Project description:Black rot, caused by Xanthomonas campestris pv. campestris (Xcc) is one of the most devastating diseases of cruciferous crops worldwide. The pathogen infects and multiplies in plant vascular tissues and, as the disease progresses, the veins of infected tissues turn black and characteristic V-shaped lesions appear along the margins of leaves.The aim of this work is to identify differentially expressed genes from Brassica oleracea during early infection by Xcc, in an attempt to identify proteins related to resistance. Cabbge seedlings were inoculated with Xanthomonas campestris pv campestris (Xcc) suspension and cabbage gene expression at 6h., 24h. And 48h. After inoculation was assessed with help of Brassica 95k EST microarray chip.
Project description:An annotated high-quality draft genome sequence for Xanthomonas campestris pv. campestris race 1 strain Xca5 (originally described as X. campestris pv. armoraciae), the causal agent of black rot on Brassicaceae plants, has been determined. This genome sequence is a valuable resource for comparative genomics within the campestris pathovar.
Project description:<p><strong>BACKGROUND:</strong> Brassica crops together with cereals represent the basis of world supplies. Due to their importance, the production losses caused by Xanthomonas campestris pv. campestris (Xcc) infection represent a high economic impact. Understanding molecular and biochemical mechanisms of plants is essential to develop resistant crops with durable protection against diseases. In this regard, metabolomics has emerged as a valuable technology to provide an overview of the biological status of a plant exposed to a disease. This study investigated the dynamic changes in the metabolic profile of Brassica oleracea plants during an Xcc infection from leaves collected at five different days post infection using a mass spectrometry approach. </p><p><strong>RESULTS:</strong> Results showed that Xcc infection causes dynamic changes in the metabolome of B. oleracea. Moreover, induction/repression pattern of the metabolites implicated in the response follows a complex dynamics during infection progression, indicating a complex temporal response. Specific metabolic pathways such as alkaloids, coumarins or sphingolipids are postulated as promising key role candidates in the infection response.</p><p><strong>CONCLUSION:</strong> This work tries to decipher the changes produced on Brassica crops metabolome under Xcc infection and represents a step forward in the understanding of B. oleracea–Xcc interaction.</p>
Project description:Bacterial ?-galactosidase is involved in lactose metabolism and acts as a prevalent reporter enzyme used in studying the activities of prokaryotic and eukaryotic promoters. Xanthomonas campestris pv. campestris (Xcc) is the pathogen of black rot disease in crucifers. ?-Galactosidase activity can be detected in Xcc culture, which makes Escherichia coli LacZ unable to be used as a reporter enzyme in Xcc. To systemically understand the ?-galactosidase in Xcc and construct a ?-galactosidase -deficient strain for promoter activity analysis using LacZ as a reporter, we here analyzed the putative ?-galactosidases in Xcc 8004. As glycosyl hydrolase (GH) family 2 (GH2) and 35 (GH35) family enzymes were reported to have beta-galactosidase activities, we studied all of them encoded by Xcc 8004. When expressed in E. coli, only two of the enzymes, XC1214 and XC2985, were found to have ?-galactosidase activity. When deleted from the Xcc 8004 genome, only the XC1214 mutant had no ?-galactosidase activity, and other GH2 and GH35 gene deletions resulted in no significant reduction in ?-galactosidase activity. Therefore, XC1214 is the main ?-galactosidase in Xcc 8004. Notably, we have constructed a ?-galactosidase-free strain that can be employed in gene traps using LacZ as a reporter in Xcc. The results reported herein should facilitate the development of high-capacity screening assays that utilize the LacZ reporter system in Xcc.
| S-EPMC5958218 | biostudies-literature
Project description:pathogen that causes rice rot disease