Project description:This SuperSeries is composed of the following subset Series: GSE18261: Expression analysis on Mll1+/+ and Mll1-/- MEFs GSE18262: ChIP-chip with antibodies for histone 3 lysine 4 trimethylation and histone 3 in Mll1+/+ and Mll1-/- MEFs GSE18263: ChIP-chip with antibodies for histone 3 lysine 4 trimethylation in Mll3+/+ and Mll3-/- MEFs and Ptip+/+ and Ptip-/- MEFs GSE18264: ChIP-chip with antibodies for histone 3 lysine 4 trimethylation, histone 3, and PolII in Mll1+/+ and Mll1-/- MEFs Refer to individual Series
Project description:Class-switch recombination (CSR) diversifies antibodies for productive immune responses while maintaining stability of the B cell genome. Transcription at the immunoglobulin heavy-chain (Igh) locus targets CSRassociated DNA damage and is promoted by the BRCT domain-containing PTIP protein. Although PTIP is a unique component of the MLL3/MLL4 chromatin-modifying complex, the mechanisms for how PTIP promotes transcription remain unclear. Here we dissect the minimal structural requirements of PTIP and its different protein complexes using quantitative proteomics in primary lymphocytes. We find that PTIP functions in transcription and CSR separately from its association with the MLL3/MLL4 complex and from its localization to sites of DNA damage. We identify a tandem BRCT domain of PTIP that is sufficient for CSR and identify PA1 as its main functional protein partner. Collectively, we provide genetic and biochemical evidence that a PTIP-PA1 subcomplex functions independently from the MLL3/MLL4 complex to mediate transcription during CSR. These results further our understanding of how multi-functional chromatin-modifying complexes are organized by subcomplexes that harbor unique and distinct activities. Genome-wide analysis of histone modifications in PA1-WT and -KO mouse activated B cells
Project description:PPARg and C/EBPa cooperate to control preadipocyte differentiation (adipogenesis). However, the factors that regulate PPARg and C/EBPa expression during adipogenesis remain largely unclear. Here we show PTIP, a protein that associates with histone H3K4 methyltransferases, regulates PPARg and C/EBPa expression in mouse embryonic fibroblasts (MEFs) and during preadipocyte differentiation. PTIP deletion in MEFs leads to marked decreases of PPARg expression and PPARg-stimulated C/EBPα expression. Further, PTIP is essential for induction of PPARg and C/EBPa expression during preadipocyte differentiation. Deletion of PTIP impairs the enrichment of H3K4 trimethylation and RNA polymerase II on PPARg and C/EBPa promoters. Accordingly, PTIP-/- MEFs and preadipocytes all show striking defects in adipogenesis. Furthermore, rescue of the adipogenesis defect in PTIP-/- MEFs requires co-expression of PPARg and C/EBPa. Finally, deletion of PTIP in brown adipose tissue significantly reduces tissue weight in mice. Thus, by regulating PPARg and C/EBPa expression, PTIP plays a critical role in adipogenesis.
Project description:PPARg and C/EBPa cooperate to control preadipocyte differentiation (adipogenesis). However, the factors that regulate PPARg and C/EBPa expression during adipogenesis remain largely unclear. Here we show PTIP, a protein that associates with histone H3K4 methyltransferases, regulates PPARg and C/EBPa expression in mouse embryonic fibroblasts (MEFs) and during preadipocyte differentiation. PTIP deletion in MEFs leads to marked decreases of PPARg expression and PPARg-stimulated C/EBPα expression. Further, PTIP is essential for induction of PPARg and C/EBPa expression during preadipocyte differentiation. Deletion of PTIP impairs the enrichment of H3K4 trimethylation and RNA polymerase II on PPARg and C/EBPa promoters. Accordingly, PTIP-/- MEFs and preadipocytes all show striking defects in adipogenesis. Furthermore, rescue of the adipogenesis defect in PTIP-/- MEFs requires co-expression of PPARg and C/EBPa. Finally, deletion of PTIP in brown adipose tissue significantly reduces tissue weight in mice. Thus, by regulating PPARg and C/EBPa expression, PTIP plays a critical role in adipogenesis. To identify PTIP-regulated genes, immortalized PTIP conditional knockout PTIPflox/flox MEFs were infected with retroviruses expressing either Cre recombinase or vector alone. We prepared duplicated RNAs from either vector or Cre infected cells (PTIP+/+ or PTIP-/-) for 4 affymetrix microarrays.
Project description:Class-switch recombination (CSR) diversifies antibodies for productive immune responses while maintaining stability of the B cell genome. Transcription at the immunoglobulin heavy-chain (Igh) locus targets CSRassociated DNA damage and is promoted by the BRCT domain-containing PTIP protein. Although PTIP is a unique component of the MLL3/MLL4 chromatin-modifying complex, the mechanisms for how PTIP promotes transcription remain unclear. Here we dissect the minimal structural requirements of PTIP and its different protein complexes using quantitative proteomics in primary lymphocytes. We find that PTIP functions in transcription and CSR separately from its association with the MLL3/MLL4 complex and from its localization to sites of DNA damage. We identify a tandem BRCT domain of PTIP that is sufficient for CSR and identify PA1 as its main functional protein partner. Collectively, we provide genetic and biochemical evidence that a PTIP-PA1 subcomplex functions independently from the MLL3/MLL4 complex to mediate transcription during CSR. These results further our understanding of how multi-functional chromatin-modifying complexes are organized by subcomplexes that harbor unique and distinct activities.
Project description:Programmed genetic rearrangements in lymphocytes require transcription at antigen receptor genes to promote accessibility for initiating double-strand break (DSB) formation critical for DNA recombination and repair. Here we show that activated B cells deficient in the PTIP component of the MLL3 (mixed-lineage leukemia 3) /MLL4 complex display impaired histone methylation (H3K4me3) and transcription initiation of downstream switch regions at the immunoglobulin heavy-chain (Igh) locus leading to defective immunoglobulin class-switching. We also show that PTIP accumulation at DSBs contributes to class-switch recombination (CSR) and genome stability independently from Igh switch transcription. These results demonstrate that PTIP promotes specific chromatin changes that control the accessibility of the Igh locus to CSR, and suggest a non-redundant role for the MLL3/MLL4 complex in altering antibody effector function. Genome-wide analysis of histone modifications, PTIP, and Pol II in PTIP-WT and PTIP-KO mouse activated B cells.
Project description:PA1 has been identified as a component of a MLL3/4-containing histone methyltransferase complex. PA1 directly interacts with PTIP but not with other complex components. Since biological functions of PA1 are unknown, we used microarrays to determine which genes are regulated by PA1. To identify PA1-regulated genes, immortalized PA1 conditional knockout PA1loxP/loxP MEFs were infected with retroviruses expressing either Cre recombinase or vector alone. We prepared duplicated RNAs from either vector or Cre infected cells (PA1+/+ or PA1-/-) for 4 affymetrix microarrays.
Project description:Global analysis of H3K4 methylation defines MLL family member targets and points to a role for MLL1-mediated H3K4 methylation in the regulation of transcriptional initiation by RNA polymerase II A common landmark of activated genes is the presence of trimethylation on lysine 4 of histone H3 (H3K4) at promoter regions. The Set1/COMPASS was the founding member and the only H3K4 methylases in S. cerevisiae, however, in mammals at least six H3K4 methylases Set1A/B and MLL1-4 are found in COMPASS-like complexes capable of methylating H3K4. To gain further insight into the different roles and functional targets for the H3K4 methylases, we have undertaken a genome-wide analysis of H3K4 methylation pattern in wild-type Mll1+/+ and Mll1-/- mouse fibroblasts (MEFs). We found that Mll1 is required for the H3K4 trimethylation of less than 5% of promoters carrying this modification. Many of these genes, which include developmental regulators such as Hox genes show decreased levels of RNA polymerase II recruitment and expression concomitant with the loss of H3K4 methylation. Although Mll1 is only required for the methylation of a subset of Hox genes, Menin, a component of the Mll1 and Mll2 complexes, is required for the overwhelming majority of H3K4 methylation at Hox loci. However, the loss of MLL3/4 and/or the Set1 complexes have little to no effect on the Hox loci H3K4 methylation or expression levels in these MEFs. Together these data provide insight into redundancy and specialization of COMPASS-like complexes in mammals and provide evidence on a possible role for Mll1-mediated H3K4 methylation in the regulation of transcriptional initiation. Chromatin Immunoprecipitation was performed with antibodies for histone 3 lysine 4 trimethylation, histone 3, and PolII in Mll1+/+ and Mll1-/- mouse embryonic fibroblasts. DNA was hybridized to a custom Agilent tiling array (4x44k format) that covers three of the hox regions (A,B,D) and a collection of other genes.