Project description:This SuperSeries is composed of the following subset Series: GSE19354: Expression data for rno-miR-146a overexpressing cell line HSC-2 GSE19462: microRNA profiling in vitro activated primary hepatic stellate cells Refer to individual Series
Project description:The molecular determinants of a healthy human liver cell phenotype remain largely uncharacterized. In addition, the gene expression changes associated with activation of primary human hepatic stellate cells, a key event during fibrogenesis, remain poorly characterized. Here, we provide the transriptomic profile underpinning the healthy phenotype of human hepatocytes, liver sinusoidal endothelial cells (LSECs) and quiescent hepatic stellate cells (qHSCs) as well as activated HSCs (aHSCs) We assess the transcriptome for purified, non-cultured human hepatocytes, liver sinusoidal cells (LSECs) and quiescent hepatic stellate cells (qHSCs) as well as culture-activated HSCs (aHSCs). Hepatocytes (n=2 donors), LSECs (n=3), qHSCs (n=3) and in vitro activated HSCs (n=3; from the same donors as the qHSCs and LSECs) were used for this study.
Project description:Gene expression was determined in primary rat hepatic stellate cells during the in vitro activation process in freshly isolated (4h), quiescent (1d), early activated (3d) and fully activated (7d) hepatic stellate cells. The cells were isolated from the liver using density centrifugation and cultured on plastic in DMEM containing serum for the indicated time. RNA was isolated using the Qiagen Rneasy Mini Kit. The Affymetrix Gene Chip Rat Gene 2.0 ST was used for gene expression analysis performed by the genomic core facility of the EMBL (Heidelberg, Germany). All experiments were performed three times with independent animals.
Project description:The transcriptomic response of rat hepatic stellate cells to endotoxin: implications for hepatic inflammation and immune regulation
Project description:Comparison of longitudinal transcriptomic profiles of activated human primary hepatic stellate cells to activated human primary hepatic stellate cells that are treated with anti-fibrotic inhibitor reveals inflammatory signaling as a key pathway that is modulated during pro-fibrotic activation and repressed during attenuation of fibrotic response.
Project description:ZnO nanoparticles can elicit a range of perturbed cell responses in vitro. The liver is a target for ZnO nanoparticle-, or Zn2+ released from ZnO nanoparticles-induced accumulation and/or impact in vitro and in vivo. The response of human hepatic stellate cells to ZnO nanoparticles has not yet been assessed. We aimed to determine whether the presence of surface coatings could protect human hepatic stellate cells from ZnO nanoparticle-induced cytotoxicity. Primary human hepatic stellate cells were treated with one of two types of uncoated ZnO nanoparticles (Z-COTE or Nanosun), two types of coated ZnO nanoparticles (HP1, MAX), a mass equivalent of ZnSO4, or were left untreated. After 24 h, RNA was isolated and processed for whole genome transcriptional profiling, comparing the expresson profiles of treated cells to the untreated controls. Each treatment was prepared in duplicate.
Project description:The molecular determinants of a healthy human liver cell phenotype remain largely uncharacterized. In addition, the gene expression changes associated with activation of primary human hepatic stellate cells, a key event during fibrogenesis, remain poorly characterized. Here, we provide the transriptomic profile underpinning the healthy phenotype of human hepatocytes, liver sinusoidal endothelial cells (LSECs) and quiescent hepatic stellate cells (qHSCs) as well as activated HSCs (aHSCs) We assess the transcriptome for purified, non-cultured human hepatocytes, liver sinusoidal cells (LSECs) and quiescent hepatic stellate cells (qHSCs) as well as culture-activated HSCs (aHSCs).
Project description:Hepatic stellate cells are involved in the development of hepatic fibrosis. We here perform transcriptional profiling of hepatic stellate cells (HSCs) isolated from Western diet/high fructose-fed C57BL6/J mice, carbon tretrachloride (CCl4)-treated C57BL6/J mice, and of murine HSCs differentiated in vitro. Specifically, gene expression profiles are obtained from hepatic stellate cells isolated from C57BL6 mice fed a Western Diet supplemented with high fructose for 12, 16 or 24 weeks or normal chow. From hepatic stellate cells isolated from C57BL6 mice treated CCl4 for 1, 4 or 8 weeks or treated with vehicle. From hepatic stellate cells isolated from healthy C57BL6 mice and seeded on normal plastic cell culture dishes for 1, 4, 8, or 12 days. And from hepatic stellate cells isolated from healthy C57BL6 mice and seeded on normal plastic cell culture dishes for 6 days in the presence of 10uM U0126 or DMSO.