Project description:The aim of present study is to understand the impact of xylose utilization on the Saccharomyces cerevisiae physiology after initial genetic engineering and in a strain with an improved xylose utilization phenotype.
Project description:Creating Saccharomyces yeasts capable of efficient fermentation of pentoses such as xylose remains a key challenge in the production of ethanol from lignocellulosic biomass. Metabolic engineering of industrial Saccharomyces cerevisiae strains has yielded xylose-fermenting strains, but these strains have not yet achieved industrial viability due largely to xylose fermentation being prohibitively slower than that of glucose. Recently, it has been shown that naturally occurring xylose-utilizing Saccharomyces species exist. Uncovering the genetic architecture of such strains will shed further light on xylose metabolism, suggesting additional engineering approaches or possibly even the development of xylose-fermenting yeasts that are not genetically modified. We previously identified a hybrid yeast strain, the genome of which is largely Saccharomyces uvarum, which has the ability to grow on xylose as the sole carbon source. Despite the sterility of this hybrid strain, we were able to develop novel methods to genetically characterize its xylose utilization phenotype, using bulk segregant analysis in conjunction with high-throughput sequencing. We found that its growth in xylose is governed by at least two genetic loci: one of the loci maps to a known xylose-pathway gene, a novel allele of the aldo-keto reductase gene GRE3, while a second locus maps to an allele of APJ1, a chaperonin gene not previously connected to xylose metabolism. Our work demonstrates that the power of sequencing combined with bulk segregant analysis can also be applied to a non-genetically-tractable hybrid strain that contains a complex, polygenic trait, and it identifies new avenues for metabolic engineering as well as for construction of non-genetically modified xylose-fermenting strains.
Project description:To determine the genomic location of a gene that permits xylose utilization we conducted bulk segregant analysis (BSA) using Affymetrix yeast tiling arrays. BSA works by taking advantage of DNA sequence polymorphisms between different strains and the fact that it is relatively easy to pool large numbers of meiotic spore products (segregants) in yeast. Pooling segregants based on their phenotype allows the region of the genome responsible for the phenotype to be detected. This is because DNA polymorphisms in regions unlinked to the locus causing the phenotype will segregate randomly and be “evened” out, while around the genomic region of interest, sequences or polymorphisms responsible for the trait will be present in all positive segregants, and absent in all negative segregants. In our case, a Simi White wine strain (S. cerevisiae) carrying the locus responsible for xylose utilization was crossed to a laboratory strain of Saccharomyces cerevisiae; this strain was estimated to carry DNA polymorphisms relative to the laboratory strain at a level of approximately .5%. Spores from the Simi White / S288c diploid were screened for the xylose utilization phenotype and 39 positive spores were combined into one pool and 39 negative spores into another pool, and genomic DNA (gDNA) was isolated from each pool. We then hybridized the positive and negative gDNA pools to tiling microarrays that were based on the S288c reference genome with the expectation that regions of the genome derived from Simi White will hybridize less robustly to the array because of the DNA polymorphisms between Simi White and S288c. Log2 ratios of probe intensities were calculated (negative/positive), and a peak appeared in the chromosome XV right subtelomeric region that corresponds to less robust hybridization to the microarray of the positive pool gDNA coming from this region of the genome
Project description:HMF and furfural were pulse added to xylose-utilizing Saccharomyces cerevisiae during either the glucose consumption phase or the xylose consumption phase. Transcriptome samples were collected before and one hour after pulsing of inhibitors.
Project description:The xylose fermentation capability of an industrainl Saccharomyces cerevisiae strain was enhanced by adaptive evolution. Eight homozygots were generated by tetrads dissection. The underlying molecular basis of the enhanced xylose fermentation capability was analyzed.
Project description:Though highly efficient at fermenting hexose sugars, the ethanologenic yeast Saccharomyces cerevisiae has limited ability to ferment five-carbon sugars. As a significant portion of sugars found in cellulosic biomasses is the five carbon sugar xylose, S. cerevisiae must be engineered to metabolize pentose sugars. Here we combined classical candidate gene approach with systems biology to develop xylose-utilising S. cerevisiae strains. The introduction of an exogenous xylose isomerase (XYLA) and an additional copy of the endogenous xylulokinase gene (XKS1) results in the significant improvement of xylose consumption. Microarray studies reveal that the introduction of XYLA and XKS1 results in the dramatic transcriptional remodelling of the cell under both glucose and xylose conditions. To further investigate the cellular processes impacted by the introduction of XYLA and XKS1, using genome-wide chemical and synthetic lethal screens we identified greater than 40 deletion mutants that impact xylose utilization. We identified four genes, ALP1, ISC1, RPL20B and BUD21, that when individually deleted allow S. cerevisiae to utilize xylose as the sole carbon source. When these mutants are combined with XYLA and XKS1, it results in strains with significant improvement in xylose consumption. We have demonstrated that systems biology techniques combined with candidate gene approaches can successfully lead to novel genetic strategies for the improvement of xylose utilization