Project description:The aim of present study is to understand the impact of xylose utilization on the Saccharomyces cerevisiae physiology after initial genetic engineering and in a strain with an improved xylose utilization phenotype.
Project description:Agricultural wastes and other non-food sources can be used to produce biofuels. Despite multiple attempts using engineered yeast strains expressing exogenous genes, the native Saccharomyces cerevisiae produces low amount of second generations of biofuels. Here, we focused on Znf1, a non-fermentable carbon transcription factor and the suppressor protein Bud21 to overcome this challenge. Several mutants of engineered S. cerevisiae strains were engineered to enhance production of biofuels and xylose-derived compounds such as xylitol. This study demonstrates Znf1's novel transcriptional regulatory control of xylose and offer an initial step toward a more sustainable production of advanced biofuels from xylose.
Project description:Saccharomyces cerevisiae cannot metabolize xylodextrins in nature. One engineered S. cerevisiae strain, which expresses XYL1 (xylose reductase gene), XYL2 (xylitol dehydrogenase gene), and XKS1 (xylulose kinase gene) from Scheffersomyces stipitis, and cdt-2 (coding for cellodextrin transporter 2), gh43-2 (coding for β-xylosidase) and gh43-7 (coding for a xylosyl-xylitol-specific β-xylosidase) from N. crassa, can utilize xylodextrins in aerobic condtions but not anaerobic conditions. We sequenced mRNA from anaerobically fed-batch cultures of the engineered S. cerevisiae grown on xylodextrins with or without the continuous feeding of xylose in biological duplicate. Dynamic changes of gene expression during xylose feeding experiment revealed by RNA deep sequencing indicated that xylose helps anaerobically xylodextrin-grown cells to recover mithondrial function thereby resuming xylodextrin consumption. Furthermore, different portions of genes involved in ribosome biogenesis showed either decreased or increased transcriptions. The underlying mechanism remains to be elucidated.
Project description:Xylose induced effects on metabolism and gene expression during anaerobic growth of an engineered Saccharomyces cerevisiae on mixed glucose-xylose medium were quantified. Gene expression of S. cerevisiae harbouring an XR-XDH pathway for xylose utilisation was analysed from early cultivation when mainly glucose was metabolised, to times when xylose was co-consumed in the presence of low glucose concentrations, and finally, to glucose depletion and solely xylose being consumed. Cultivations on glucose as a sole carbon source were used as a control. Genome-scale dynamic flux balance analysis models were developed and simulated to analyse the metabolic dynamics of S. cerevisiae in the cultivations. Model simulations quantitatively estimated xylose dependent dynamics of fluxes and challenges to the metabolic network utilisation. Increased relative xylose utilisation was predicted to induce two-directionality of glycolytic flux and a redox challenge already at low glucose concentrations. Xylose effects on gene expression were observed also when glucose was still abundant. Remarkably, xylose was observed to specifically delay the glucose-dependent repression of particular genes in mixed glucose-xylose cultures compared to glucose cultures. The delay occurred during similar metabolic flux activities in the both cultures. Xylose is abundantly present together with glucose in lignocellulosic streams that would be available for the valorisation to biochemicals or biofuels. Yeast S. cerevisiae has superior characteristics for a host of the bioconversion except that it strongly prefers glucose and the co-consumption of xylose is yet a challenge. Further, since xylose is not a natural substrate of S. cerevisiae, the regulatory response it induces in an engineered yeast strain cannot be expected to have evolved for its utilisation. Dynamic cultivation experiments on mixed glucose-xylose medium having glucose cultures as control integrated with mathematical modelling allowed to resolve specific effects of xylose on the gene expression and metabolism of engineered S. cerevisiae in the presence of varying amounts of glucose.
Project description:Though highly efficient at fermenting hexose sugars, the ethanologenic yeast Saccharomyces cerevisiae has limited ability to ferment five-carbon sugars. As a significant portion of sugars found in cellulosic biomasses is the five carbon sugar xylose, S. cerevisiae must be engineered to metabolize pentose sugars. Here we combined classical candidate gene approach with systems biology to develop xylose-utilising S. cerevisiae strains. The introduction of an exogenous xylose isomerase (XYLA) and an additional copy of the endogenous xylulokinase gene (XKS1) results in the significant improvement of xylose consumption. Microarray studies reveal that the introduction of XYLA and XKS1 results in the dramatic transcriptional remodelling of the cell under both glucose and xylose conditions. To further investigate the cellular processes impacted by the introduction of XYLA and XKS1, using genome-wide chemical and synthetic lethal screens we identified greater than 40 deletion mutants that impact xylose utilization. We identified four genes, ALP1, ISC1, RPL20B and BUD21, that when individually deleted allow S. cerevisiae to utilize xylose as the sole carbon source. When these mutants are combined with XYLA and XKS1, it results in strains with significant improvement in xylose consumption. We have demonstrated that systems biology techniques combined with candidate gene approaches can successfully lead to novel genetic strategies for the improvement of xylose utilization
Project description:Saccharomyces cerevisiae cannot metabolize non-glucose sugars including cellobiose, xylose, xylodextrins in nature, which are prevalent in plant cell wall. Here, one engineered S. cerevisiae strain, which expresses a cellodextrin transporter gene (cdt-1) and an intracellular β-glucosidase gene (codon-optimized gh1-1) from Neurospora crassa; XYL1 (xylose reductase gene), XYL2 (xylitol dehydrogenase gene), and XKS1 (xylulose kinase gene) from Scheffersomyces stipitis, as well as cdt-2 (coding for cellodextrin transporter 2), gh43-2 (coding for β-xylosidase) and gh43-7 (coding for a xylosyl-xylitol-specific β-xylosidase) from N. crassa, can utilize the above non-glucose sugars. We sequenced mRNA from exponential cultures of the engineered S. cerevisiae grown on glucose, cellobiose, xylose or xylodextrins as a single carbon source in both aerobic and anaerobic conditions in biological triplicate. Differences in gene expression between non-glucose sugar and glucose metabolism revealed by RNA deep sequencing indicated that non-glucose sugar metabolism induced mitochondrial activation and reduced amino acid and protein biosynthesis under fermentation conditions.