Project description:Seven different Solanaceae species, Potato (Solanum tubersosum), Tomato (Lycopersicum esculentum), Eggplant (Solanum melangena), Pepper (Capsicum annuum), Tobacco (Nicotiana tabacum), Petunia and Nicotiana benthamiana were subjected to cold stress. Plants were grown at 25 C for 4-6 weeks after wich cold stress was initiated by exposing the plants to 4 C for 4, 8, 12, 24 and 48 hours. Control samples were isolated from plants just before the cold stress was initated. RNA was isolated using Qiagen RNeasy. Keywords: Direct comparison
Project description:Lysine acetylation in proteins is a dynamic and reversible Post-translational modification and plays an important role in diverse cellular processes, but limited knowledge is available for acetylation modifications in pepper (Capsicum annuum L.) resistance of cold stress. In this study, the proteome and acetylome of two peppers with different cold resistance under different cold stress and recovery treatment were investigated. In total, 6213 proteins groups and 4574 lysine acetylation sites of 2261 protein groups were identified. Cold stress and recovery treatment results in 3008 differentially expressed proteins (DEPs) and 768 differentially expressed acetylated proteins (DEAPs). Further analysis found a total 1988 proteins were both identifed in the proteome and acetylome data and elucidated the functional differences between the up-regulated and down-regulated proteins in these co-identified proteins through GO enrichment. Twenty acetylation motifs were defined on 3934 unique lysine acetylation sites and motifs *KS*, *KY*, and *KH* occupied the highest proportion of all the identified peptides. Subcellular distribution predictions showed that acetylated proteins in pepper leaves distributed predominantly in chloroplast, cytoplasm and nuclear. KEGG analysis showed 397 identified acetylated proteins were involved in 93 different metabolic pathways. Then the dynamic changes of acetylated proteins in photosynthesis and carbon fixation in photosynthetic organisms pathways under cold stress were further analyzed and many key acetylated proteins regulating cold resistance of pepper were found in these two metabolic pathways. This study is the first to identify the acetylome in pepper, expands greatly the catalog of lysine acetylation substrates and sites in Solanaceae crops and provide a new insight for the post-translational modification study.
Project description:Cold-sensitive Cavendish Banana and relatively cold-tolerant Dajiao (Musa spp.) comprise an important part of diets for millions of people around the globe. Low temperature is one of the key environment stresses which greatly affect the global banana production. However, little is known about the changes of global protein phosphorylation in Musa spp. and their regulatory roles in response to cold stress. In this study, we employed a TMT6-plex quantitative analysis to conduct a global phosphoproteome profiling between Cavendish Banana and Dajiao subject to the cold stress for 0 hour and 3 hour. A total of 679 phosphopeptides containing 772 distinct phosphorylated sites from 529 phosphoproteins were identified in Cavendish Banana, 180 phosphorylation sites (belonging to 147 phosphoproteins) were differentially changed after 3 h cold stress. While in Dajiao 241 phosphopeptides with 271 individual phosphosites from 207 phosphoproteins were confidently identified, and 83 phosphorylation sites from 63 phosphoproteins were differentially changed under 3 h cold stress. Bioinformatic analysis of protein interaction network indicated that Mitogen-activated protein kinase kinase 2 (MKK2) was located in the center of the MAPK signaling network along with 7 other members whose phosphorylated site abundances were remarkably differentiated between Cavendish Banana and Dajiao in response to cold stress. Western blotting of MKK2 protein and its T31 phosphorylated site showed the increased expression of MKK2 in the time course of cold stress, with no detectable T31 phosphorylation in Cavendish Banana. On the contrary, the decreased MKK2 expression with increased T31 phosphorylation was consistently observed in Dajiao. These results suggest that the MKK2 interaction network in Dajiao, along with other cold-specific phosphoproteins found in this study, appears to play an important role in the molecular mechanisms of Dajiao being high tolerance to cold stress. The results also provide new evidence that cellular MKK2 phosphorylation as a signaling pathway plays an important role in abiotic stress tolerance that serves as a universal plant cold tolerance mechanism. To the best of our knowledge, this is the first report of MKK2 network involved in the regulatory of the Musa spp. response to cold stress.
Project description:The response to acid stress is a fundamental process in bacteria. Three transcription factors, GadE, GadW, and GadX (GadEWX) are known to play a critical role in the transcriptional regulation of glutamate-dependent acid resistance (GDAR) system in Escherichia coli K-12 MG1655. However, the regulatory role of GadEWX in coordinating interacting cellular functions is still unknown. Here, we comprehensively reconstruct genome-wide GadEWX transcriptional regulatory network in E. coli K-12 MG1655 under acidic stress. Integrative data analysis reveals that GadEWX regulons are comprised of 45 genes in 31 transcription units (TUs), significantly expanding the current knowledge of the GadEWX regulatory network. We demonstrate that GadEWX directly and coherently regulate several proton efflux/influx and generating/consuming enzymes with pairs of negative-feedback loops to maintain pH homeostasis by controlling proton flow. In addition, GadEWX regulate genes with assorted functions including molecular chaperones, acid resistance, stress response, and other regulatory activities. These results present a comprehensive understating on how GadEWX simultaneously coordinates many other cellular processes to produce the overall response of E. coli to acid stress. A total of six samples were analyzed. GadE-8-myc, GadW-8 -myc, and GadX-8-myc tagged cells were cultured in M9 glucose minimal media at pH 5.5 with biological duplicates.
Project description:Integration of genome wide association studies (GWAS), metabolomics and transcriptomics reveals phenolic acids and flavonoids associated genes and their regulatory elements under drought stress in rapeseed flowers
Project description:The circadian clock represents a critical regulatory network, which allows plants to anticipate environmental changes as inputs and promote plant survival by regulating various physiological outputs. Here, we examine the function of the clock-regulated transcription factor, CYCLING DOF FACTOR 6 (CDF6), during cold stress in Arabidopsis thaliana. We found that the clock gates CDF6 transcript accumulation in the vasculature during cold stress. CDF6 mis-expression results in an altered flowering phenotype during both ambient and cold stress. A genome-wide transcriptome analysis links CDF6 to genes associated with flowering and seed germination during cold and ambient temperatures, respectively. Analysis of key floral regulators indicates that CDF6 alters flowering during cold stress by repressing photoperiodic flowering components, FLOWERING LOCUS T (FT), CONSTANS (CO), and BROTHER OF FT (BFT). Gene ontology enrichment further suggests that CDF6 regulates circadian and developmental associated genes. These results provide insight into how the clock-controlled CDF6 modulates plant development during moderate cold stress.
Project description:Plants experience a wide array of environmental stimuli to form a memory of adversity. Histone modification plays roles in plant stress memory, of which the mechanisms of H3K4me3 of low temperature memory in plants are poorly understood although H3K4me3 is a key histone modification. Combined with phenotypic analysis, chip-seq, and transcriptome analyses were performed to investigate the potential H3K4me3 contributions for different phases of recurring cold stresses Arabidopsis plants. Chromatin immunoprecipitation DNA-sequencing (ChIP-seq) for H3K4me3 in different low temperature stress.