Project description:To explore the loss of Dullurd function in mouse embryo development, we have performed the Agilent microarray analysis between a Dullard-heterozygous and a Dullard-homozygous E7.5 embryo. Our findings show that Dullard does not act in concert with BMP4 and Smad1/5/8, whereas loss of Dullard is associated with a reduced level of WNT/β-catenin signaling activity, accompanied by elevated expression of Wnt3 and WNT antagonists including Dkk1, Sfrp1 and Sfrp5 in mouse germ cell formation. E7.5 mouse embryos were collected. One Dullard-heterozygous embryo and one Dullard-homozygous embryo were used for the analysis.
Project description:To explore the loss of Dullurd function in mouse embryo development, we have performed the Agilent microarray analysis between a Dullard-heterozygous and a Dullard-homozygous E7.5 embryo. Our findings show that Dullard does not act in concert with BMP4 and Smad1/5/8, whereas loss of Dullard is associated with a reduced level of WNT/β-catenin signaling activity, accompanied by elevated expression of Wnt3 and WNT antagonists including Dkk1, Sfrp1 and Sfrp5 in mouse germ cell formation.
Project description:Much remains unknown about the signals that induce early mesoderm to initiate hematopoietic differentiation. Here we show that endoglin (Eng), a receptor for the TGFβ superfamily, identifies all cells with hematopoietic fate in the early embryo. These arise in an Eng+Flk1+ mesodermal precursor population at E7.5, a cell fraction also endowed with endothelial potential. In Eng knockout embryos, hematopoietic colony activity and numbers of CD71+Ter119+ erythroid progenitors were severely reduced. This coincided with severely reduced expression of embryonic globin and key BMP target genes including the hematopoietic regulators Scl, Gata1, Gata2 and Msx-1. To interrogate molecular pathways active in the earliest hematopoietic progenitors, we applied transcriptional profiling to sorted cells from E7.5 embryos. Eng+Flk-1+ progenitors co-expressed TGFβ and BMP receptors and target genes. Furthermore, Eng+Flk-1+ cells presented high levels of phospho-SMAD1/5, indicating active TGFβ and/or BMP signaling. Remarkably, under hematopoietic serum-free culture conditions, hematopoietic outgrowth of endoglin-expressing cells was dependent on TGFβ superfamily ligands: BMP4, BMP2, or TGF-β1. These data demonstrate that the E+F+ fraction at E7.5 represents mesodermal cells competent to respond to TGFb1, BMP4, or BMP2, shaping their hematopoietic development, and that endoglin is a critical regulator in this process by modulating TGF/BMP signaling. E7.5 pooled embryos (25 litters; 300 embryos approximately) were dissected and 3,000 cells were sorted in triplicate for Eng-Flk1-, Eng-Flk1+, Eng+Flk1+, and Eng+Flk1- fractions. Microarray results were analyzed with GeneSpring GX software.
Project description:To systematically evaluate the effect of embryo lysates feeding, we conducted RNA sequencing (RNA-seq) on day 7 N2 worms treated with embryo lysates. Our findings revealed that embryo lysates affected the expression of genes related to fatty acid metabolism, degradation of branched-chain amino acids, and lysosome functions. Notably, worms treated with embryo lysates showed increased fatty acid degradation gene expression and decreased fatty acid elongation gene expression.
Project description:Mesp1-Cre+ cells from E7.5 mouse embryos (from the cross Mesp1-Cre/+ x Rosa26-Gli3R-IRES-YFP/tdTomato) were sorted by FACS where wild type (tdTomato-expressing) and mutant (Gli3R + YFP co-expressing) cells were collected separately from single litters.