Project description:To investigate the mRNA m6A modification profiling in Mesocricetus auratus cells that infected with Senecavirus, we used passage-5 Senecavirus A to infect BSR-T7/5 cells. We then performed m6A MeRIP-seq(GenSeq®️ m6A MeRIP Kit) at at two time points (12hrs or 72 hrs after infection), each time point with three replicates.
Project description:Senecavirus A (SVA) belongs to the family of small RNA viruses, the genus Senecavirus, and has become a research hotspot because of the oncolytic viral characteristics. PIWI-interacting RNAs (piRNAs) are a class of small RNAs found in mammalian cells in recent years; however, the host piRNA expression profile during SVA infection and their role in viral infection is not well understood. In this study, we obtained small RNA transcriptome expression profiles from SVA-infected pig kidney cell lines (PK-15) by high-throughput sequencing. Differential expression (DE) analysis, GO annotation, and KEGG analysis of piRNAs in SVA-infected and non-infected PK-15 cells were performed. qRT-PCR was used to validate the DE of piRNAs. The results showed that 981 and 1,370 novel piRNAs were identified in SVA-infected and non-infected PK-15 cells; expression of 129 piRNAs was upregulated while that of 44 piRNAs was downregulated after SVA infection. The DE of 10 piRNAs was further verified by qRT-PCR. GO annotation analysis results showed the metabolism, proliferation, and differentiation were significantly activated after SVA infection. KEGG results showed that after SVA infection, piRNA was mainly enriched in AMPK signaling pathway, Rap1 signaling pathway, circadian rhythm, and VEGF signaling pathway, which suggested that piRNAs may play a role in regulating antiviral immunity, intracellular homeostasis, and tumor processes during SVA infection. This is the first report of the piRNA transcriptome in pig kidney cells and will contribute to the research of piRNA regulatory mechanism during SVA infections and provide an important reference for the prevention and treatment of SVA.
Project description:Senecavirus A (SVA) belongs to the genus Senecavirus in the family Picornaviridae. It is increasingly used for proteomic research that tandem mass tag-labeled liquid chromatography-tandem mass spectrometry is combined with the parallel reaction monitoring technique. In this study, this combined method was used to uncover separately proteomic profiles of SVA- and non-infected BSR-T7/5 cells. Further, both proteomic profiles were compared with each other. The proteomic profiling showed that a total of 361 differentially expressed proteins were identified, out of which, 305 and 56 were upregulated and downregulated in SVA-infected cells at 12 h post-inoculation, respectively. GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analyses showed that cellular metabolisms were mainly affected in SVA-inoculated cells at an early stage of infection.