Project description:Primary objectives: The primary objective is to investigate circulating tumor DNA (ctDNA) via deep sequencing for mutation detection and by whole genome sequencing for copy number analyses before start (baseline) with regorafenib and at defined time points during administration of regorafenib for treatment efficacy in colorectal cancer patients in terms of overall survival (OS).
Primary endpoints: circulating tumor DNA (ctDNA) via deep sequencing for mutation detection and by whole genome sequencing for copy number analyses before start (baseline) with regorafenib and at defined time points during administration of regorafenib for treatment efficacy in colorectal cancer patients in terms of overall survival (OS).
Project description:This project is designed for whole transcriptome sequencing of bacteria isolated from Rhizosphere of Wheat Plant, which has its impact on overall plant growth.
Project description:Leaves are colonised by a complex mix of microbes, termed the leaf microbiota. Even though the leaf microbiota is increasingly recognised as an integral part of plant life and health, our understanding of its interactions with the plant host is still limited. Here, mature, axenically grown Arabidopsis thaliana plants were spray-inoculated with diverse leaf-colonising bacteria. Whole transcriptome sequencing revealed that four days after inoculation, leaf transcriptional changes to colonisation by non-pathogenic and pathogenic bacteria differed in strength but not in the type of response.
Project description:Rhizobia are soil bacteria that induce nodule formation on leguminous plants. In the nodules, they reduce dinitrogen to ammonium that can be utilized by plants. Besides nitrogen fixation, rhizobia have other symbiotic functions in plants including phosphorus and iron mobilization and protection of the plants against various abiotic stresses including salinity. Worldwide, about 20% of cultivable and 33% of irrigation land is saline, and it is estimated that around 50% of the arable land will be saline by 2050. Salinity inhibits plant growth and development, results in senescence, and ultimately plant death. The purpose of this study was to investigate how rhizobia, isolated from Kenyan soils, relieve common beans from salinity stress. The yield loss of common bean plants, which were either not inoculated or inoculated with the commercial R. tropici rhizobia CIAT899 was reduced by 73% when the plants were exposed to 300 mM NaCl, while only 60% yield loss was observed after inoculation with a novel indigenous isolate from Kenyan soil, named S3. Expression profiles showed that genes involved in the transport of mineral ions (such as K+, Ca2+, Fe3+, PO43-, and NO3-) to the host plant, and for the synthesis and transport of osmotolerance molecules (soluble carbohydrates, amino acids, and nucleotides) are highly expressed in S3 bacteroids during salt stress than in the controls. Furthermore, genes for the synthesis and transport of glutathione and γ-aminobutyric acid were upregulated in salt-stressed and S3-inocculated common bean plants. We conclude that microbial osmolytes, mineral ions, and antioxidant molecules from rhizobia enhance salt tolerance in common beans.
Project description:Plant volatiles can mediate plant-plant communication in the sense that plants attacked by herbivores can signal their unattacked neighbors of danger by emitting HIPVs. We call this the priming effect. Since the plant defense response is a systematic process involving numerous pathways and genes,to characterize the priming process, a time course study using a genome-wide microarray may provide more accurate information about the priming process. Furthermore, to what extent do the priming process and direct defense share similar gene expression profiles or pathways are also not clear. We used microarray to detect the priming effect of plant volatiles to healthy Arabidopsis thaliana, and the effect of direct leafminer feeding to Arabidopsis thalianas. A system using Lima bean plants, from which HIPVs can be effectively induced by leafminer feeding, as emitters and Arabidopsis thaliana as receivers is used to track the priming process between neighbor plants. The Arabisopsis thaliana seedlings were treated by volatiles from leafminer fed lima bean for 24h or 48h for RNA extraction and hybridization on Affymetrix microarrays. The Arabisopsis thaliana seedlings fed by leafminer directly were also collected The for RNA extraction and hybridization on Affymetrix micorarrays. We want to explore the response of Arabidopsis thaliana to priming volatiles during a 24h-48h time course. We also want to compare the effect of priming and direct leafminer feeding.
Project description:Understanding the complex interactions between plants and herbivores is essential for improving crop resistance. To deep into the role of cyanogenesis in plant defence, we investigated the response of the cyanogenic Phaseolus lunatus (lima bean) and the non-cyanogenic Phaseolus vulgaris (common bean) to Tetranychus urticae infestation. Despite spider mite infesting both legumes, severity of leaf damage was reduced in lima bean. Comparative transcriptome analysis revealed that both species exhibited substantial metabolic and transcriptional changes upon infestation, yet the response in P. lunatus was significantly more pronounced. Specific differences in amino acid homeostasis and in the expression of key genes of the cyanogenic pathway were observed in P. lunatus. Moreover, the mandelonitrile lyase gene (PlMNL1) was upregulated following T. urticae feeding concomitantly to an enzyme activity increase. Lima bean plants also displayed an induction of β-cyanoalanine synthase (PlCYSC1), a key enzyme for cyanide detoxification, suggesting an internal regulatory mechanism to manage the toxicity of their defence responses. These findings contribute to have a major comprehension of the plant-insect interactions and underscore the potential role of cyanogenesis in the elaboration of unique specific defensive responses, even within the same genus, which may reflect distinctive evolutionary adaptations or varying metabolic capabilities between species.
Project description:In Coronary Artery Bypass Grafting (CABG), the combined use of Left or Right Internal Mammary Artery (LIMA or RIMA) -collectively known as Bilateral IMAs (BIMAs)- provides a survival advantage over the LIMA alone. Several studies analyzed the gene expression in LIMAs and other conduits, however they either used a candidate gene approach or analyzed a small number of samples. Additionally, RIMA has never been analyzed compared to LIMA. Here we report a genome-wide transcriptional analysis of BIMA to investigate the expression profile of these conduits in patients undergoing CABG. Marginal differences were reported between LIMA and RIMA (p <0.05) using a linear model for microarray data. Ingenuity Pathway Assist (IPA) analysis found no consistent set of over-represented pathways and no trends in patterns of gene expression. As expected, in comparing the BIMAs to the aorta, we found differences in pathways and processes associated with atherosclerosis, inflammation, and cell signaling. Although evidence in favor of the use of BIMA in CABG has been available for over a decade, their routine use in clinical practice remains very low accounting for only 4% of CABG procedures in the US. Despite differences in embryologic development, our genome-wide transcriptional analysis, show marginal differences between LIMA and RIMA. Taken together, clinical and genomic analyses provide evidences that could impact the independent or combined use of the BIMAs as a conduit in CABG.
Project description:P. syringae pv. phaseolicola is the causal agent of the halo blight disease of beans (Phaseolus vulgaris L). The disease attacks both foliage and pods of plant host. Many genes involve in pathogenicity and virulence are induced only in plant or in the presence of host components. In this work we investigated the effect of bean pod extract on the transcriptomic profile of the bacterium, when grown at low temperature in minimal medium with or without bean pod extract.