Project description:This SuperSeries is composed of the following subset Series: GSE28306: Expression data from Burkholderia multivorans cystic fibrosis clinical isolates GSE30402: Hybridization of Burkholderia multivorans D2095 and D2214 genomic DNA Refer to individual Series
Project description:The Th2 cytokine IL-13 has been described to be involved in biliary epithelial injury and liver fibrosis in patients as well as in animal models. IL-13 was found to reduce tight junction-associated barrier function of bile ducts, to promote cholangiocyte hyperplasia, and thus causing biliary epithelial injury. We generated Abcb4-/-- and IL-13-/- double-knockout mice on fibrosis susceptible genetic background BALB/c. Molecular and cellular mechanisms of hepatic and ileal pathology were investigated by mRNA microarray. Depletion of IL-13 in Abcb4-/--mice resulted in a tenfold decrease of total serum bile acid concentrations at the age of 8 weeks and lead to a recovery of intrahepatic bile duct integrity. The decrease of serum bile acid in 8 week old mice went along with relative enhancement of bile acid excretion and normalization of the composition of fecal bile excretion, correction of fecal microbiome, and improved ileal integrity. Liver integrity, measured by serum ALT, was ameliorated in younger mice and strongly correlated with the concentration of serum bile acids. 52 weeks old Abcb4-/-IL-13-/--mice exhibited significantly reduced hepatic fibrosis.
Project description:Arrays comparing Pseudomonas aeruginosa growth in a defined synthetic cystic fibrosis sputum medium with and without aromatic amino acids. Additional arrays comparing wild-type Pseudomonas aeruginosa and phhR mutant P. aeruginosa in defined synthetic cystic fibrosis sputum medium.
Project description:To provide a more detailed survey of adaptive changes in the physiology of P. aeruginosa (PA) during long-term infection of the cystic fibrosis (CF) lung, we performed a comparative proteome and transcriptome analysis of a set of isogenic sequential non-mutator and mutator isolates from three selected CF patients. Recently, we showed that during CF lung persistence PA mutators converge to a virulence-attenuated phenotype. In this study, we demonstrate that besides virulence-associated traits (VATs) the adaptation process of PA predominantly comprises metabolic pathways. In end-stage mutator strains, transcripts of genes encoding VATs, chemotaxis, degradation of aromatic compounds and several two-component regulatory systems were decreased. In contrast, several transcripts of genes or proteins involved in metabolism of fatty acids, nucleotides, amino acids and the generation of energy were increased. Of particular interest is the increased expression level of genes involved in (i) the anaerobic arginine-deiminase pathway, (ii) the anaerobic respiration such as nitrate-uptake protein OprF, redox-active azurin and cytchrome c551 peroxidase, (iii) the micro-aerobic respiration such as high oxygen-affinity cytochrome oxidase cbb3 (iv) the tricarboxylic acid cycle (TCA), glyoxylate shunt and anaplerotic carboxylation reactions to oxaloacetate. Strikingly, an increased transcription of the anaerobic regulator gene anr correlates with the up-regulation of ANR-dependent genes. In conclusion, these changes in transcriptome and proteome indicate an adaptive shift towards constitutive expression of genes of metabolic pathways obviously required for growth under micro-aerobic and nutritional conditions of suppurative CF lung tissue. Finally, these results provide us with new targets for antimicrobial agents and biomarkers reflecting adaptation of PA towards progressive CF lung disease. Experiment Overall Design: P. aeruginosa isolates recovered from different time points of chronic cystic fibrosis lung disease were cultered in vitro, harvested for RNA extraction and hybridization on Affymetrix microarrays. We compared the transcriptome (triplicate microarrays) of early non-mutator P. aeruginosa isolates with late mutator isolates with high mutation frequency probably the driving force of an efficient adaptation to changing environements to conclude from differences in gene expression to the requirements of CF lung environment. Experiment Overall Design: Second publication of array data to be added later
Project description:We did bulk RNA sequencing in newborn cystic fibrosis (CF) and non-CF pig kidney. We compared kidney gene expression profiling between non-CF and CF pigs. RNA sequencing results showed that there is not significant difference between non-CF and CF in terms of gene expression, suggesting that CFTR knockout does not affect kidney development in newborn pigs.
Project description:Autosomal recessive polycystic kidney disease is a severe, monogenetically inherited kidney and liver disease and PCK rats carrying the orthologous mutant gene serve as a model of human disease. We combined selective MALDI imaging of sulfated kidney lipids and Fisher discriminant analysis of imaging data sets for identification of candidate lipid markers of progressive disease in PCK rats. Our study highlights strong increases in lower mass lipids as main classifiers of cystic disease. Structure determination by high resolution mass spectrometry identifies these altered lipids as taurine-conjugated bile acids. Beside increased levels of serum-cholesterol these sulfated lipids are selectively elevated in the PCK rat model but not in models of related hepatorenal fibrocystic diseases suggesting that they be molecular markers of the disease. Genome-scale gene expression profiling of PCK and SD livers as control was performed to attempt elucidation of some of the underlying mechanisms leading to increases of cholesterol and taurine-conjugated bile acids in the PCK rat. Several pathways were found to be changed in cystic livers with up regulation or down regulation of important gene sets. Enhanced expression of steroid biosynthesis genes might result in the observed increased levels of cholesterol. In contrast, primary bile acid biosynthesis was found to be down regulated in diseased livers. These findings might be explained by compensatory mechanisms of liver metabolism to reduce toxic levels of accumulated bile acids. Snap-frozen liver tissue of 10 week old rats were subjected for RNA extraction and hybridization on Affymetrix microarrays to perform genome-scale gene expression profiling of n = 6 diseased PCK and n = 6 Sprague Dawley rat livers as control.
Project description:We have compared gene expression in human nasal brushing cells from 19 cystic fibrosis (CF) patients and 19 healthy controls using a 5.2K cDNA microarray. Our aim is to identify new disease biomarkers for the Cystic Fibrosis Gene Therapy Consortium. These markers will be used to report more effectively on the response to the administration of gene therapy in vivo. Cystic Fibrosis is a recessive genetic disease caused by mutations in the cystic fibrosis conductance regulator (CFTR) gene which encodes a chloride ion channel. The most common mutation is the ∆F508 mutation, present on 70% of CF chromosomes in Caucasian populations. The disease affects many organs in the body such as the pancreas, liver, sweat glands, small intestine and reproductive tracts but is most commonly associated with progressive, inflammatory lung disease. The current average life expectancy of CF patients is 35 years. Gene therapy is being developed as a treatment for CF airway disease, however, means of measuring the efficiency and efficacy of gene therapy in vivo are lacking. This is mainly due to the difficulty in measuring the chloride conductance of CFTR in cells and tissues. Furthermore, clinical assays for measuring improvements in lung function are insensitive. Surrogate markers of inflammation and CFTR function will therefore be important for the effective assessment of gene therapy in vivo. We have analysed gene expression in human nasal epithelium as this is considered an accessible surrogate for the conducting airways where disease manifests in the majority of patients. Additionally, this tissue will be sampled in clinical trials.
Project description:A deficiency in cystic fibrosis transmembrane conductance regulator (CFTR) function in cystic fibrosis (CF) leads to chronic lung disease. However, the molecular mechanisms are not well understood and therapies that can help all patients remain elusive. CF is associated with abnormalities in fatty acids, ceramides and cholesterol, therefore we examined the impact of CFTR deficiency on lipid metabolism and pro-inflammatory signaling in airway epithelium using mass spectrometric, protein array and RNAseq analyses. We observed a striking imbalance in fatty acid and ceramide metabolism, associated with chronic oxidative stress under basal conditions in CF mouse lung and well differentiated bronchial epithelial cell cultures of CFTR knock out pig and CF patients. Cell autonomous features of all three CF models included high ratios of ω-6- to ω-3-polyunsaturated fatty acids and long- to very long- chain ceramide species (LCC/VLCC). The anti-oxidants glutathione (GSH) and deferoxamine partially corrected the lipid profile indicating that oxidative stress may promote the lipid abnormalities. CFTR-targeted modulators reduced the lipid imbalance and apparent oxidative stress, confirming the CFTR dependence of lipid ratios. RNA sequencing and protein array analysis revealed higher expression and shedding of cytokines and growth factors from CF epithelial cells compared to non-CF cells, consistent with sterile inflammation and tissue remodeling under basal conditions. Treatment with antioxidants or CFTR modulators that mimic the approved combination therapies, Orkambi and Trikafta, did not suppress the inflammatory phenotype. These results suggest that anti-inflammatory therapies may provide additional benefit for CF patients taking CFTR modulator drugs.