Project description:Analysis of cultured epidermal keratinocytes treated with interleukin-4 (IL-4) and interleukin-13 (IL-13). IL-4 and IL-13 are up-regulated in atopic dermatitis. Results provide insight into the role of IL-4 and IL-13 cytokines in the pathogenesis of atopic dermatitis. Analysis of epidermal keratinocytes transfected with dual oxidase 1 (DUOX1) siRNA knockdown before treatment with IL-4 and IL-13. DUOX1 is one of the NOX family members of NADPH oxidases whose primary function is ROS generation. Results provide insight into the role of the incraesed expression of DUOX1 in IL-4/IL-13-treated NHEK for IL4/IL13 signaling. IL-4 and IL-13 induced gene expression in human epidermal keratinocytes (NHEK) was measured at 48 hours. Gene expression in NHEK tranfected with 10 nM DUOX1 siRNA followed by treatment with 100 ng/ml IL-4 and 100 ng/ml IL-13 was measured at 48 hours. Three independent experiments were performed using different strains for each experiment.
Project description:Analysis of cultured epidermal keratinocytes treated with interleukin-4 (IL-4) and interleukin-13 (IL-13). IL-4 and IL-13 are up-regulated in atopic dermatitis. Results provide insight into the role of IL-4 and IL-13 cytokines in the pathogenesis of atopic dermatitis. Analysis of epidermal keratinocytes transfected with dual oxidase 1 (DUOX1) siRNA knockdown before treatment with IL-4 and IL-13. DUOX1 is one of the NOX family members of NADPH oxidases whose primary function is ROS generation. Results provide insight into the role of the incraesed expression of DUOX1 in IL-4/IL-13-treated NHEK for IL4/IL13 signaling.
Project description:The conjunctival epithelium covering the eye consists of two main differentiated cell types: mucus-producing Goblet cells and ‘keratinocytes’ of unknown function. Here, we describe long-term expanding organoids representing human conjunctiva. To check if interleukins may boost secretome expression, we stimulated the organoid cells with pleiotropic anti-inflammatory cytokines interleukin-4 and IL-13. Secretions were identified by shotgun MS to quantitatively enriched secreted proteins.
Project description:Chronic autoimmune skin disease characterized by epidermal proliferation with hyper- and para-keratosis. The aberrant background immune response involves helper T-lymphocyte types 1 and 17 and their respective secreted cytokines tumor necrosis factor alpha (TNF) and interleukin 17 (IL-17). These pro-inflammatory cytokines stimulate the activation of keratinocytes, resulting in the release of acute phase cytokines, followed by chronic phase cytokines thus promotes induced hyperplasia of keratinocyte. The pro-differentiative action of fisetin on dual cytokine-induced abnormally proliferating keratinocyte revealed downregulation of psoriasis-associated genes and activation of autophagic genes, as well as normalization of genes involved in keratinocyte terminal differentiation. These result supports the effect of fisetin on improving psoriasis like inflammatory flareups in cultured keratinocyte in vitro.
Project description:Kynureninase is a member of a large family of catalytically diverse but structurally homologous pyridoxal 5'-phosphate (PLP) dependent enzymes known as the aspartate aminotransferase superfamily or alpha-family. The Homo sapiens and other eukaryotic constitutive kynureninases preferentially catalyze the hydrolytic cleavage of 3-hydroxy-l-kynurenine to produce 3-hydroxyanthranilate and l-alanine, while l-kynurenine is the substrate of many prokaryotic inducible kynureninases. The human enzyme was cloned with an N-terminal hexahistidine tag, expressed, and purified from a bacterial expression system using Ni metal ion affinity chromatography. Kinetic characterization of the recombinant enzyme reveals classic Michaelis-Menten behavior, with a Km of 28.3 +/- 1.9 microM and a specific activity of 1.75 micromol min-1 mg-1 for 3-hydroxy-dl-kynurenine. Crystals of recombinant kynureninase that diffracted to 2.0 A were obtained, and the atomic structure of the PLP-bound holoenzyme was determined by molecular replacement using the Pseudomonas fluorescens kynureninase structure (PDB entry 1qz9) as the phasing model. A structural superposition with the P. fluorescens kynureninase revealed that these two structures resemble the "open" and "closed" conformations of aspartate aminotransferase. The comparison illustrates the dynamic nature of these proteins' small domains and reveals a role for Arg-434 similar to its role in other AAT alpha-family members. Docking of 3-hydroxy-l-kynurenine into the human kynureninase active site suggests that Asn-333 and His-102 are involved in substrate binding and molecular discrimination between inducible and constitutive kynureninase substrates.