Project description:Random genomic sequencing and analysis by the Genolevures Consortium as part of a comparative genomics study of hemiascomycete yeasts
Project description:Random genomic sequencing and analysis by the Genolevures Consortium as part of a comparative genomics study of hemiascomycete yeasts
Project description:Random genomic sequencing and analysis of strain CBS 94 by the Genolevures Consortium as part of a comparative genomics study of hemiascomycete yeasts
Project description:Random genomic sequencing and analysis by the Genolevures Consortium as part of a comparative genomics study of hemiascomycete yeasts
Project description:Hyaluronic acid (HA) is a biopolymer formed by UDP-glucuronic acid and UDP-N-acetyl-glucosamine disaccharide units linked by β-1,4 and β-1,3 glycosidic bonds. It is widely employed in medical and cosmetic procedures. HA is synthesized by hyaluronan synthase (HAS), which catalyzes the precursors' ligation in the cytosol, elongates the polymer chain, and exports it to the extracellular space. Here, we engineer Ogataea (Hansenula) polymorpha for HA production by inserting the genes encoding UDP-glucose 6-dehydrogenase, for UDP-glucuronic acid production, and HAS. Two microbial HAS, from Streptococcus zooepidemicus (hasAs) and Pasteurella multocida (hasAp), were evaluated separately. Additionally, we assessed a genetic switch using integrases in O. polymorpha to uncouple HA production from growth. Four strains were constructed containing both has genes under the control of different promoters. In the strain containing the genetic switch, HA production was verified by a capsule-like layer around the cells by scanning electron microscopy in the first 24 h of cultivation. For the other strains, the HA was quantified only after 48 h and in an optimized medium, indicating that HA production in O. polymorpha is limited by cultivation conditions. Nevertheless, these results provide a proof-of-principle that O. polymorpha is a suitable host for HA production.
Project description:BackgroundOgataea polymorpha is a thermotolerant, methylotrophic yeast with significant industrial applications. While previously mainly used for protein synthesis, it also holds promise for producing platform chemicals. O. polymorpha has the distinct advantage of using methanol as a substrate, which could be potentially derived from carbon capture and utilization streams. Full development of the organism into a production strain and estimation of the metabolic capabilities require additional strain design, guided by metabolic modeling with a genome-scale metabolic model. However, to date, no genome-scale metabolic model is available for O. polymorpha.ResultsTo overcome this limitation, we used a published reconstruction of the closely related yeast Komagataella phaffii as a reference and corrected reactions based on KEGG and MGOB annotation. Additionally, we conducted phenotype microarray experiments to test the suitability of 190 substrates as carbon sources. Over three-quarter of the substrate use was correctly reproduced by the model and 27 new substrates were added, that were not present in the K. phaffii reference model.ConclusionThe developed genome-scale metabolic model of O. polymorpha will support the engineering of synthetic metabolic capabilities and enable the optimization of production processes, thereby supporting a sustainable future methanol economy.