Project description:RATIONALE: The Epstein Barr virus can cause cancer and lymphoproliferative disorders. Ganciclovir is an antiviral drug that acts against the Epstein Barr virus. Arginine butyrate may make virus cells more sensitive to ganciclovir. Combining ganciclovir and arginine butyrate may kill more Epstein Barr virus cells and tumor cells.
PURPOSE: Phase I trial to study the effectiveness of arginine butyrate plus ganciclovir in treating patients who have cancer or lymphoproliferative disorders that are associated with the Epstein Barr virus.
Project description:Small RNA-Seq study comparing Epstein-Barr virus (EBV) infected BJAB-B1 cells to isogenic, but uninfected, BJAB cells. The goal was to deduce differentially expressed small ncRNAs both micro and non-micro (up to 200 nt) between the two cell lines to gain insights into EBV-associated deregulation of host small ncRNAs.
Project description:Upon Epstein-Barr virus (EBV) infection of human B lymphocytes non-coding RNAs (ncRNAs) regulate expression of viral and cellular genes. In this study, we generated a specialized cDNA library from EBV-immortalized cells and subjected it to deep sequencing. We identified 631 unique ncRNA genes, comprised of 321 potential novel differentially expressed ncRNA candidates. Subsequently, we investigated differential expression of known and potential novel ncRNA candidates by custom-designed microchips by comparing expression of ncRNA genes of EBV-immortalized versus non-infected control cells. Among the differentially expressed candidates from chip analysis, differential expression of six novel ncRNA candidates was verified by northern blot analysis. In addition, microchip analysis resulted in observation of increased expression levels of a significant number of potential ncRNA candidates that were preferentially derived from genomic loci annotated as Alu repetitive elements. Alu elements are members of the repeat subfamily of short interspersed nuclear elements (SINE) and were reported to be transcribed upon stress stimulation. While EBV infection significantly up-regulated expression of Alu-derived RNA transcripts, no significant increase in expression of these transcripts was observed under additional tested stress conditions. By employing deep sequencing followed by custom microchip analysis, we identified six novel differentially expressed ncRNAs as well as significantly increased expression levels of Alu-derived RNA transcripts. These transcripts might be involved in crucial functions upon infection by EBV. 5 biological replica of non-infected BL2 samples were compared to 5 biological replica of LCL 197/2 EBV immortalized samples
Project description:Upon Epstein-Barr virus (EBV) infection of human B lymphocytes non-coding RNAs (ncRNAs) regulate expression of viral and cellular genes. In this study, we generated a specialized cDNA library from EBV-immortalized cells and subjected it to deep sequencing. We identified 631 unique ncRNA genes, comprised of 321 potential novel differentially expressed ncRNA candidates. Subsequently, we investigated differential expression of known and potential novel ncRNA candidates by custom-designed microchips by comparing expression of ncRNA genes of EBV-immortalized versus non-infected control cells. Among the differentially expressed candidates from chip analysis, differential expression of six novel ncRNA candidates was verified by northern blot analysis. In addition, microchip analysis resulted in observation of increased expression levels of a significant number of potential ncRNA candidates that were preferentially derived from genomic loci annotated as Alu repetitive elements. Alu elements are members of the repeat subfamily of short interspersed nuclear elements (SINE) and were reported to be transcribed upon stress stimulation. While EBV infection significantly up-regulated expression of Alu-derived RNA transcripts, no significant increase in expression of these transcripts was observed under additional tested stress conditions. By employing deep sequencing followed by custom microchip analysis, we identified six novel differentially expressed ncRNAs as well as significantly increased expression levels of Alu-derived RNA transcripts. These transcripts might be involved in crucial functions upon infection by EBV.
Project description:Epstein-Barr virus is a gamma-herpes virus that is causally associated with several lymphomas and carcinomas. This virus encodes at least 25 pre-miRNAs, which are expressed in infected cells to yield more than 50 detected mature miRNAs. miRNAs are small, non-coding RNAs that inhibit gene expression by promoting the inhibition of translation or of degradation of mRNAs. Currently, the function of these viral miRNAs and the contribution they provide to EBV's life-cycle remain largely unknown, due to difficulties in identifying cellular and viral genes regulated by these miRNAs. We have compared and contrasted two methods to identify targets of viral miRNAs in order to identify the advantages and limitations of each method to aid in uncovering the functions of EBV's miRNAs. Examination of RISC (RNA Induced Silencing Complexes) associated transcripts under 2 conditions in BJAB cells
Project description:Epstein-Barr virus is a gamma-herpes virus that is causally associated with several lymphomas and carcinomas. This virus encodes at least 25 pre-miRNAs, which are expressed in infected cells to yield more than 50 detected mature miRNAs. miRNAs are small, non-coding RNAs that inhibit gene expression by promoting the inhibition of translation or of degradation of mRNAs. Currently, the function of these viral miRNAs and the contribution they provide to EBV's life-cycle remain largely unknown, due to difficulties in identifying cellular and viral genes regulated by these miRNAs. We have compared and contrasted two methods to identify targets of viral miRNAs in order to identify the advantages and limitations of each method to aid in uncovering the functions of EBV's miRNAs.
Project description:Epstein-Barr virus has been reported to regulate cellular microRNA expression in B cells. In the present study, we investigated the differential microRNAs modulated by Epstein-Barr virus in Naspharyngeal Carcinoma, using CapitalBio corporation's mammalian miRNA arrays. Three cellular models were used in this study: the human naspharyngeal carcinoma cell line TW03 as a blank control; TW03 transfected with Epstein-Barr virus encoded LMP1; TW03 transfected with Epstein-Barr virus encoded LMP2A
Project description:Gene expression profile of AGS gastric carcinoma cell line infected in vitro with Epstein-Barr Virus. Some samples also contain are stably transfected with a dominant negative LMP1 construct.
Project description:Burkitt lymphoma cells can be latently infected with Epstein-Barr virus (EBV). The virus may be activated into its lytic cycle by small molecules, such as sodium butyrate. Other molecules, such as valproate and valpromide, block viral lytic reactivation. These pharmacological agents alter the cellular physiology that controls viral lytic gene expression. Changes in the cellular transcription were measured in response to one activator and two inhibitors of the Epstein-Barr virus lytic cycle in order to identify cellular genes that are potential regulators of the viral life cycle.
Project description:High-throughput sequencing has opened numerous possibilities for the identification of regulatory RNA-binding events. Cross-linking and immunoprecipitation of Argonaute protein members can pinpoint microRNA target sites within tens of bases, but leaves the identity of the microRNA unresolved. A flexible computational framework that integrates sequence with cross-linking features reliably identifies the microRNA family involved in each binding event, considerably outperforms sequence-only approaches, and quantifies the prevalence of noncanonical binding modes. Ago2 (Argonaute 2) PAR-CLIP and RNA deep sequencing of Epstein-Barr virus B95.8-infected Lymphoblastoid Cell Lines (LCLs)