Project description:To confirm that the SMAD1/5- and SMAD4-associated genes are direct transcriptional regulators in mESCs in response to BMP, we treated undifferentiated R1 ES cells with BMP4 or with the BMP4 antagonist noggin, which can inhibit BMP signaling effectively for 4 h. Undifferentiated R1 ES cells were treated for 4 h with BMP4 or with the BMP4 antagonist noggin, which can inhibit BMP signaling effectively. Untreated R1 ES cells served as the control.
Project description:To confirm that the SMAD1/5- and SMAD4-associated genes are direct transcriptional regulators in mESCs in response to BMP, we treated undifferentiated R1 ES cells with BMP4 or with the BMP4 antagonist noggin, which can inhibit BMP signaling effectively for 4 h.
Project description:Recently, it was shown that the Bmp antagonist Noggin could strongly induce cardiomyocyte differentiation by transient treatment of undifferentiated ES cells. In order to determine how Noggin may induce cardiac differentiation, we compared differentially expressed genes during Noggin treatment of ES cells using microarray analysis and found that matrix metalloproteinase (Mmp)-3 is the only gene whose expression is increased by Noggin treatment. Keywords: embryonic stem cells, cardiac differentiation, matrix metalloproteinase-3, Noggin
Project description:Introgressed variants from other species can be an important source of genetic variation because they may arise rapidly, can include multiple mutations on a single haplotype, and have often been pretested by selection in the species of origin. Although introgressed alleles are generally deleterious, several studies have reported introgression as the source of adaptive alleles-including the rodenticide-resistant variant of Vkorc1 that introgressed from Mus spretus into European populations of Mus musculus domesticus. Here, we conducted bidirectional genome scans to characterize introgressed regions into one wild population of M. spretus from Spain and three wild populations of M. m. domesticus from France, Germany, and Iran. Despite the fact that these species show considerable intrinsic postzygotic reproductive isolation, introgression was observed in all individuals, including in the M. musculus reference genome (GRCm38). Mus spretus individuals had a greater proportion of introgression compared with M. m. domesticus, and within M. m. domesticus, the proportion of introgression decreased with geographic distance from the area of sympatry. Introgression was observed on all autosomes for both species, but not on the X-chromosome in M. m. domesticus, consistent with known X-linked hybrid sterility and inviability genes that have been mapped to the M. spretus X-chromosome. Tract lengths were generally short with a few outliers of up to 2.7 Mb. Interestingly, the longest introgressed tracts were in olfactory receptor regions, and introgressed tracts were significantly enriched for olfactory receptor genes in both species, suggesting that introgression may be a source of functional novelty even between species with high barriers to gene flow.
Project description:In this work we investigated the molecular mechanisms that sustain the endothelial differentiation of murine embryonic stem cells (ES). When ES cells are co-cultured with the stromal PA6 cells in serum-free medium they differentiate mainly into neurons, thanks to the neural inducing activity exerted by the stroma. The addition of exogenous FGF2 allows also the differentiation of endothelial cells whereas, in presence of exogenous BMP4, ES cells differentiate exclusively into endothelium. The purpose of the gene expression analysis of FGF2 and BMP4 treated co-cultures versus the untreated ones was to profile the transcriptomes of FGF2 and BMP4-driven endothelial differentiation in order to detect molecules and pathways involved upon each of the two exogenous signals. In parallel we also performed transcriptome analysis of single monocultures of stromal PA6 cells to investigate the signals released by the stroma in response to FGF2 and BMP4. We found that TGFb1 is involved in the differentiation of ES cells into endothelium in response to FGF2 while Wnt6 and Wnt pathway sustain the endothelial differentiation of ES cells in response to BMP4. In this work we investigated the molecular mechanisms that sustain the endothelial differentiation of murine embryonic stem cells (ES). When ES cells are co-cultured with the stromal PA6 cells in serum-free medium they differentiate mainly into neurons, thanks to the neural inducing activity exerted by the stroma. The addition of exogenous FGF2 allows also the differentiation of endothelial cells whereas, in presence of exogenous BMP4, ES cells differentiate exclusively into endothelium. The purpose of the gene expression analysis of FGF2 and BMP4 treated co-cultures versus the untreated ones was to profile the transcriptomes of FGF2 and BMP4-driven endothelial differentiation in order to detect molecules and pathways involved upon each of the two exogenous signals. In parallel we also performed transcriptome analysis of single monocultures of stromal PA6 cells to investigate the signals released by the stroma in response to FGF2 and BMP4. We found that TGFb1 is involved in the differentiation of ES cells into endothelium in response to FGF2 while Wnt6 and Wnt pathway sustain the endothelial differentiation of ES cells in response to BMP4.
Project description:In this work we investigated the molecular mechanisms that sustain the endothelial differentiation of murine embryonic stem cells (ES). When ES cells are co-cultured with the stromal PA6 cells in serum-free medium they differentiate mainly into neurons, thanks to the neural inducing activity exerted by the stroma. The addition of exogenous FGF2 allows also the differentiation of endothelial cells whereas, in presence of exogenous BMP4, ES cells differentiate exclusively into endothelium. The purpose of the gene expression analysis of FGF2 and BMP4 treated co-cultures versus the untreated ones was to profile the transcriptomes of FGF2 and BMP4-driven endothelial differentiation in order to detect molecules and pathways involved upon each of the two exogenous signals. In parallel we also performed transcriptome analysis of single monocultures of stromal PA6 cells to investigate the signals released by the stroma in response to FGF2 and BMP4. We found that TGFb1 is involved in the differentiation of ES cells into endothelium in response to FGF2 while Wnt6 and Wnt pathway sustain the endothelial differentiation of ES cells in response to BMP4. In this work we investigated the molecular mechanisms that sustain the endothelial differentiation of murine embryonic stem cells (ES). When ES cells are co-cultured with the stromal PA6 cells in serum-free medium they differentiate mainly into neurons, thanks to the neural inducing activity exerted by the stroma. The addition of exogenous FGF2 allows also the differentiation of endothelial cells whereas, in presence of exogenous BMP4, ES cells differentiate exclusively into endothelium. The purpose of the gene expression analysis of FGF2 and BMP4 treated co-cultures versus the untreated ones was to profile the transcriptomes of FGF2 and BMP4-driven endothelial differentiation in order to detect molecules and pathways involved upon each of the two exogenous signals. In parallel we also performed transcriptome analysis of single monocultures of stromal PA6 cells to investigate the signals released by the stroma in response to FGF2 and BMP4. We found that TGFb1 is involved in the differentiation of ES cells into endothelium in response to FGF2 while Wnt6 and Wnt pathway sustain the endothelial differentiation of ES cells in response to BMP4.